OPERATION AND MAINTENANCE MANUAL

HYLEBOS BRIDGE
MAY 2012 with 2020 revisions

Prepared By: Hardesty & Hanover, LLP
OPERATION AND MAINTENANCE MANUAL

HYLEBOS BRIDGE
MAY 2012

Prepared By: Hardesty & Hanover, LLP
HYLEBOS BRIDGE

OPERATION AND MAINTENANCE MANUAL

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
</tr>
<tr>
<td>2</td>
<td>Operation</td>
</tr>
<tr>
<td>3</td>
<td>Maintenance</td>
</tr>
<tr>
<td>4</td>
<td>Photos</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>PURPOSE OF MANUAL</td>
<td>1-2</td>
</tr>
<tr>
<td>1.2</td>
<td>SCOPE OF MANUAL</td>
<td>1-2</td>
</tr>
<tr>
<td>1.3</td>
<td>OPERATIONAL RESPONSIBILITIES</td>
<td>1-2</td>
</tr>
<tr>
<td>1.4</td>
<td>MAINTENANCE RESPONSIBILITIES</td>
<td>1-2</td>
</tr>
<tr>
<td>1.5</td>
<td>SAFETY PROCEDURES</td>
<td>1-2</td>
</tr>
<tr>
<td>1.6</td>
<td>REVISIONS TO MANUAL</td>
<td>1-2</td>
</tr>
<tr>
<td></td>
<td>Revision to the OIM Manual Form</td>
<td>1-3</td>
</tr>
</tbody>
</table>

FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Plan and Elevation</td>
<td>1-4</td>
</tr>
<tr>
<td>1.2</td>
<td>Bridge Machinery</td>
<td>1-5</td>
</tr>
<tr>
<td>1.3</td>
<td>Electrical and Mechanical Rooms</td>
<td>1-6</td>
</tr>
</tbody>
</table>
1.1 PURPOSE OF MANUAL
This manual provides procedures for operation of the Hylebos Bridge, and for maintenance of the bridge’s electrical and mechanical equipment.

1.2 SCOPE OF MANUAL
This manual is divided into 4 primary sections, and one sub-section (Troubleshooting). In brief, each section provides the following information:

Section 1 Responsibilities for personnel involved in the bridge. A brief overview of the operation and maintenance manual. Figures showing the location of equipment.

Section 2 Step-by-step procedures describing how to open and close the bridge, acknowledge a vessel’s request to open the bridge, when it is acceptable to open the bridge, and what to do in the event that there are problems in the electrical or mechanical equipment during an opening or closing operation.

Section 3 Step-by-step procedures for the maintenance of the bridge’s mechanical and electrical equipment. Included are the location of the equipment and number of units, as well preventative maintenance procedures and frequencies.

Section 4 Photos of the mechanical and electrical equipment identified in Section 3.

1.3 OPERATIONAL RESPONSIBILITIES
Operational responsibilities are assigned by the City of Tacoma Department of Public Works. Operation of the bridge shall be in accordance with the requirements of the US Coast Guard.

1.4 MAINTENANCE RESPONSIBILITIES
The maintenance responsibilities are assigned by the City of Tacoma Department of Public Works.

1.5 SAFETY PROCEDURES
Maintenance personnel shall follow all safety procedures as required by the City of Tacoma.

1.6 REVISIONS TO MANUAL
If at any time there is a request for revisions to this manual, complete the form (page 1-4) titled "Revisions to the Operation and Maintenance Manual for the Hylebos Bridge.” Send the completed form to the City of Tacoma Public Works Department Engineering Division at the mailing address shown on the form. The Department of Public Works is responsible for reviewing and implementing requested changes.
REVISIONS TO THE O&M MANUAL FOR THE HYLEBOS BRIDGE

<table>
<thead>
<tr>
<th>Page No.</th>
<th>Section No.</th>
<th>As It Reads Now:</th>
<th>With the Changes It Reads as:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AT ANY TIME, MAIL REVISIONS TO:

CITY OF TACOMA PUBLIC WORKS DEPARTMENT
ENGINEERING DIVISION
747 MARKET STREET
TACOMA, WA 98402

Signed by _______________________
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>INTRODUCTION</td>
<td>2-3</td>
</tr>
<tr>
<td>2.2</td>
<td>MARINE VESSEL OPENINGS</td>
<td>2-3</td>
</tr>
<tr>
<td>2.3</td>
<td>MAINTENANCE OPENINGS</td>
<td>2-3</td>
</tr>
<tr>
<td>2.4</td>
<td>PRE-OPERATION STATUS</td>
<td>2-4</td>
</tr>
<tr>
<td>2.5</td>
<td>VESSEL ACKNOWLEDGEMENT</td>
<td>2-5</td>
</tr>
<tr>
<td>2.6</td>
<td>NORMAL BRIDGE OPERATION</td>
<td>2-5</td>
</tr>
<tr>
<td>2.6.1</td>
<td>Opening the Bridge</td>
<td>2-7</td>
</tr>
<tr>
<td>2.6.2</td>
<td>Closing the Bridge</td>
<td>2-13</td>
</tr>
<tr>
<td>2.7</td>
<td>TROUBLESHOOTING AND CORRECTIVE ACTION</td>
<td>2-18</td>
</tr>
<tr>
<td>2.7.1</td>
<td>Procedure to Manually Operate the Gates</td>
<td>2-18</td>
</tr>
<tr>
<td>2.7.2</td>
<td>Procedure to Manually Operate the End Lock</td>
<td>2-19</td>
</tr>
<tr>
<td>2.7.3</td>
<td>Bypass Operation</td>
<td>2-20</td>
</tr>
<tr>
<td>2.7.4</td>
<td>Power Outage and Manual Transfer Switch Operation</td>
<td>2-22</td>
</tr>
<tr>
<td>2.7.5</td>
<td>Single Leaf Operation</td>
<td>2-23</td>
</tr>
<tr>
<td>2.7.6</td>
<td>PLC Allen Bradley HMI Display Screen Alarm List</td>
<td>2-23</td>
</tr>
<tr>
<td>Date</td>
<td>Direction</td>
<td>Time Opened</td>
</tr>
<tr>
<td>------</td>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Page _______ of _______
2.1 INTRODUCTION
This section describes rules and procedures required to operate the bridge.

Information provided in this section includes:

- Scheduling bridge openings
- The correct status of the electrical equipment prior to beginning bridge operations - identified as the Pre-Operation Status
- The appropriate procedures to acknowledge a request to open the bridge
- Normal bridge operation procedure.

Also included in this section is information on Troubleshooting (red tabbed section) in the event that a prescribed operational event, following a required action, does not occur.

2.2 MARINE VESSEL OPENINGS
For each opening it is required to complete the Bridge Opening Log. It is required to send the Bridge Opening Log to the City of Tacoma at the end of each month.

The Code of Federal Regulations for Navigational Waters provides the legal basis governing the opening and closing of the Hylebos River Bridge for marine traffic. Therefore, all personnel involved in the operations of the bridge are required to be a trained bridge operator, to abide by and be fully familiar with these regulations summarized below:

1. A trained bridge operator must be in the Bridge Control Tower for the purpose of operating the bridge.
2. The bridge shall be opened on request from a vessel’s captain when notified by means of whistle blasts, radio, telephone or other suitable methods.
3. When the bridge operator is not present a vessel’s captain desiring passage through the opened end is required to give 1 hours notice requesting a bridge opening. The vessel’s Captain can use the telephone number posted or radio to request an opening.

(For exact wording of regulations see Title 33, Chapter 1, Part 117)

As a rule, the Bridge Operator is required to open the bridge when requested by the operator of a marine vessel requesting clear passage.

The Hylebos River Bridge may also be opened by City of Tacoma for the purpose of repairs, emergencies, and public safety.

2.3 MAINTENANCE OPENINGS
It is required to open the bridge at least once a month as a test of the bridge’s full operational capability. The opening will serve as a test of all elements of the bridge machinery, including gates and signals.
2.4 PRE-OPERATION STATUS

On the facing page is a schematic of the Control Desk identifying each push button, indicating light, switch and key on the Desk for the pre-operational status. The schematic also shows which of the indicating lights are energized (illuminated) and/or de-energized (turned off), and the position of each switch and push button. The pre-operational status is as follows:

- All Circuit Breakers at the Motor Control Centers - located in the Electrical Rooms - are closed (on).
- The Incoming Main Circuit Breaker - located along the southeast (far downstream) side of the bridge - is closed (on).
- The Manual Transfer Switch - located along the southeast (far downstream) side of the bridge - is switched to Utility Power.
- Tower lights are on.
- Gates are raised.
- The bridge is seated and locked.
- All Red Channel Lights and Pier Lights are on.
- “CONTROL POWER” key operated switch on Control Desk is switched to OFF. “DRIVE LOCKOUT” key operated switches on Control Desk are switched to OFF. “MASTER BYPASS” key operated switch on Control Desk is switched to OFF.
- The Emergency Stop button on the Control Desk is pulled out.
- Span positions are at “0” degrees.
- The “NW GATE” switch is switched to OFF. The “SW GATE” switch is switched to OFF. The “NE GATE” switch is switched to OFF. The “SE GATE” switch is switched to OFF. The “CENTER LOCK” switch is switched to OFF. The “NAVIGATION LIGHTS” switch is switched to AUTO. The “FLOOD LIGHT” switch is switched to OFF.
- The following White, Red, and Green Control Desk indicating lights are energized (on).
 1. White NAVIGATION LIGHTS
 2. Green “MAIN BREAKER” ON
- The PLC Alarm Screen is energized.
- The door to the Bridge Control Tower is always locked.
2.5 VESSEL ACKNOWLEDGEMENT

Acknowledgement of the request by the Bridge Operator is mandatory.

Acknowledgement is the verbal or other communicative responses from a Bridge Operator to the responsible person or Captain of any marine vessel who has communicated a “bridge open” request to the Bridge Operator. The marine vessel will usually communicate a “bridge open” request by horn or by calling the operator on the marine radio VHF Channel 13 or 16. The horn “bridge open” request is one prolonged blast (4 to 6 seconds) followed by one short blast (1 second).

The Bridge Operator is required to acknowledge the “bridge open” request within 10 seconds of receiving it and also relay information as to how long before the operation will begin if it will not be within the next 10 minutes.

There are two methods of acknowledging a vessel’s “bridge open” request and to indicate that an opening will occur immediately. The principle method of acknowledgement (the first method to be tried) is calling the vessel on the marine radio VHF Channel 13 or 16 and informing the vessel Captain that his request is acknowledged and the Bridge Operator understands his request. Channel 13 is the bridge-to-bridge, and the vessel-to-vessel hailing channel. (Note: Channel 16 is the Coast Guard emergency/work channel).

If the VHF is not working, the “back-up method” of acknowledgement is using the boat signal horn, by using the pushbutton marked “HORN” on the Hylebos Bridge control desk. Acknowledgement of the vessel Captain’s request using the horn is achieved as follows:

- **One prolonged blast followed by one short blast.** The short blast is sounded not more than three seconds following the prolonged blast.

When the bridge cannot be opened immediately, the vessel’s opening request must still be acknowledged by either the VHF system or the horn. Again, **VHF is the primary method** of acknowledgement and the horn is the back-up method of acknowledgement. If the horn is used to acknowledge that the bridge cannot be opened, this is achieved as follows:

- **Five short blasts.** Each short blast must be shorter than 1 second and be sounded in rapid succession not more than 30 seconds after the vessel’s opening signal. The five rapid blast signals shall be repeated until acknowledged in some manner by the requesting vessel.

If the VHF and the horn are inoperative, and the bridge cannot be opened; the bridge operator may use flags or other viable methods of communication to inform the vessel captain that the requested opening must be delayed.

2.6 NORMAL BRIDGE OPERATION

On the following pages are the normal procedures described as “Operator Action” which are used to operate the bridge. The Operator Actions are presented in numerical sequence. Each Operator Action is listed with a “Result” column that explains what should happen if the operation is successful and a “Troubleshooting” column that explains how to proceed if the operation is not successful. The “Troubleshooting” column will reference Section 2.8 “Troubleshooting and Corrective Action” which provides procedures to follow in the event that a malfunction occurs during a bridge operation.

On the page facing the numerical sequence is a schematic of the Control Desk identifying each push button, indicating light, switch and key on the Desk. The schematic also shows the sequence in which the desk buttons are to be pushed – and consequently, the order in which the indicating lights are energized (illuminated) and/or de-energized (turned off).
Bridge operation begins and ends in the Pre-Operation Status as described in Section 2.5.

An indicating light test should be performed before each operation of the bridge to verify all indicating lights will energize properly. The test should be performed before control power is activated on the control desk. In order to perform an indicating light test, manually depress each indicating light and verify it is energized (illuminated), then release the light and verify it de-energizes (turns off) properly. All the lamps on the control desk should energize only while depressed. If a lamp does not energize, replace the bulb when convenient.
2.6.1 Opening the Bridge

<table>
<thead>
<tr>
<th>ACTION</th>
<th>OPERATOR ACTION</th>
<th>RESULT</th>
<th>TROUBLESHOOTING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verify</td>
<td>PRE-OPERATION STATUS as described in Section 2.5. Note: The City of Tacoma is abbreviated as ‘CoT.’ The current telephone numbers to call City of Tacoma are located in Section 7 “Contacts and Telephone Numbers”</td>
<td>Bridge systems have power available for operation and the control desk switches are in the correct position.</td>
<td>If circuit breakers are turned off consult Section 4.2 LOCKOUT/TAGOUT AND OTHER SAFETY PROCEDURES to verify it is safe to energize the equipment. If so, manually turn circuit breaker handles to match the pre-operation status. Manually turn the switches to match the pre-operation status. If the White CONTROL ON indicating light is not energized: - Notify CoT. - See section 2.8.1 “Power Outage”</td>
</tr>
<tr>
<td>Perform an indicating light test by manually depressing the LAMP TEST pushbutton to verify all lamps energize (illuminate), then release the LAMP TEST pushbutton to verify all lamps de-energize (turns off) properly.</td>
<td>All indicating lights energize and de-energize properly.</td>
<td>Replace lamps that do not energize properly.</td>
<td></td>
</tr>
<tr>
<td>Use VHF 13 or VHF 16 to acknowledge vessel’s request for an opening. Or use the boat signal horn by pressing the Black “HORN” pushbutton (located on the Hylebos Bridge Control Desk) two short blasts followed by one prolonged blast to acknowledge the vessel.</td>
<td>Vessel knows that the bridge operator is aware of the vessel’s request.</td>
<td>VHF fails to function: - Use boat signal horn. Both VHF and boat signal horn fail: - Use flags. - Notify CoT.</td>
<td></td>
</tr>
<tr>
<td>ACTION</td>
<td>OPERATOR ACTION</td>
<td>RESULT</td>
<td>TROUBLESHOOTING</td>
</tr>
<tr>
<td>--------</td>
<td>-----------------</td>
<td>--------</td>
<td>-----------------</td>
</tr>
</tbody>
</table>
| 1 | Turn “CONTROL POWER” key switch to ON and release the switch, allowing it to stay in the ON position. | **White** “CONTROL POWER” ON indicating light is energized.
Green “TRANSFER SWITCH” NORMAL indicating light is energized.
Green TRAFFIC SIGNALS indicating light is energized.
Green NW GATE, SW GATE, NE GATE, SE GATE indicating lights are energized.
Green “WEST LEAF” BRAKES SET indicating light is energized.
Green “WEST LEAF” FULL CLOSED indicating light is energized.
Green “EAST LEAF” BRAKES SET indicating light is energized.
Green “EAST LEAF” FULL CLOSED indicating light is energized.
Green CENTER LOCK indicating light is energized. | If indicating lights do not energize per RESULT and if the indicating light test determines the light is operable and does not energize:
-BACK OUT of the operation. (Go to ACTION 12.)
-Call CoT and notify the vessel of the delay. |
| | Visually verify that the sidewalks are clear of pedestrians and bicycles. | OK to proceed to ACTION 2 when sidewalks are clear. | If sidewalks are not clear:
-Delay the opening until clear. |
<table>
<thead>
<tr>
<th>ACTION</th>
<th>OPERATOR ACTION</th>
<th>RESULT</th>
<th>TROUBLESHOOTING</th>
</tr>
</thead>
</table>
| 2 | Press and release the “TRAFFIC SIGNALS” **Red** Stop push button. | **Green** “TRAFFIC SIGNALS” indicating light is de-energized.
Amber “TRAFFIC SIGNALS” indicating light is energized.
Red “TRAFFIC SIGNALS” indicating light flashes.
Amber “TRAFFIC SIGNALS” indicating light de-energizes.
Red “TRAFFIC SIGNALS” indicating light is energized.
Gate arm yellow lights start flashing.
Traffic signals on the bridge approach energize changing from green to yellow to red. | If indicating lights do not energize per RESULT and if the indicating light test determines the light is operable and it does not energize, or if a light does not de-energize per RESULT:
- **BACK OUT** of the operation. (Go to ACTION 15.)
- **Call CoT and notify the vessel of the delay.** |
| | Visually verify that oncoming traffic has stopped. Verify that oncoming gate areas are clear of people, bicycles, and vehicles. | OK to proceed to ACTION 3 when traffic has stopped and oncoming gate areas are clear. | If oncoming gate areas are not clear:
- **Delay the opening until clear.** |
<table>
<thead>
<tr>
<th>ACTION</th>
<th>OPERATOR ACTION</th>
<th>RESULT</th>
<th>TROUBLESHOOTING</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Turn and hold the oncoming gate “NE GATE” and the oncoming gate “SW GATE” switches to the LOWER position. Release the switches when the oncoming gates are fully lowered.</td>
<td>Gongs begin sounding. Red “NE GATE” indicating light is energized. Red “SW GATE” indicating light is energized. Green “NE GATE” indicating light is de-energized. Green “SW GATE” indicating light is de-energized. Oncoming gate arms lower. Gongs stop sounding when fully lowered.</td>
<td>If indicating lights do not energize per RESULT and if the indicating light test determines the light is operable and it does not energize, or if a light does not de-energize per RESULT: -Note inoperable indicating light and proceed to visual verification.</td>
</tr>
<tr>
<td></td>
<td>Visually verify that oncoming gates are fully lowered. Visually verify that there are no people, bicycles or vehicles on the bridge. Visually verify that off going gate areas are clear of people, bicycles, and vehicles.</td>
<td>OK to proceed to ACTION 4 when oncoming gates are fully lowered, and the bridge and off going gate areas are clear.</td>
<td>If either oncoming gate is not fully lowered: -Call the CoT and notify the vessel of the delay -Manually lower the oncoming gate. See Section 2.8.1 “Procedure to Manually Operate the Gates.” If off going gate areas are not clear: -Delay opening until clear</td>
</tr>
<tr>
<td>4</td>
<td>Turn and hold the off going gate “NW GATE” and the off going gate “SE GATE” switches to the LOWER position. Release the switches when the gates are fully lowered.</td>
<td>Red “NW GATE” indicating light is energized. Red “SE GATE” indicating light is energized. Green “NW GATE” indicating light is de-energized. Green “SE GATE” indicating light is de-energized. Off going gate arms lower.</td>
<td>If indicating lights do not energize per RESULT and if the indicating light test determines the light is operable and it does not energize, or if a light does not de-energize per RESULT: -Note inoperable indicating light and proceed to visual verification.</td>
</tr>
<tr>
<td>ACTION</td>
<td>OPERATOR ACTION</td>
<td>RESULT</td>
<td>TROUBLESHOOTING</td>
</tr>
<tr>
<td>--------</td>
<td>----------------</td>
<td>--------</td>
<td>-----------------</td>
</tr>
</tbody>
</table>
| 5 | Turn and release the "CENTER LOCK" switch to the UNLOCK position. | Red "CENTER LOCK" indicating light is energized. Green "CENTER LOCK" indicating light is de-energized. | If indicating lights do not energize per RESULT and if the lamp test determines the light is operable and it does not energize, or if a light does not de-energize per RESULT:
- Call the CoT and notify the vessel of the delay.
- Manually operate the Center Lock. See Section 2.8.2 “Procedure to Manually Operate the Center Lock.” |
<table>
<thead>
<tr>
<th>ACTION</th>
<th>OPERATOR ACTION</th>
<th>RESULT</th>
<th>TROUBLESHOOTING</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Place your foot in the floor mounted Foot Switch and depress the pedal with your foot.</td>
<td>When the ‘Deadman Switch’ pedal is depressed the Red “WEST LEAF” BRAKES RELEASED and Red “EAST LEAF” BRAKES RELEASED indicating lights are energized; and Green “WEST LEAF” BRAKES SET and Green “EAST LEAF” BRAKES SET indicating lights are de-energized.</td>
<td>If indicating lights do not energize per RESULT and if the lamp test determines the light is operable and it does not energize, or if a light does not de-energize per RESULT: -BACK OUT of the operation. (Go to ACTION 7.) -Call CoT and notify the vessel of the delay.</td>
</tr>
</tbody>
</table>

Depress and release the Green OPEN push button.

When both the east leaf and west leaf are in the FULL OPEN position, release the Foot Switch pedal.

When the Green OPEN push button is depressed and released:

Amber “WEST LEAF” MTR 1 RUNNING (or MTR2) is energized. Amber “EAST LEAF” MTR 1 RUNNING (or MTR2) is energized. The PLC controller will alternate which motor operates between each operation.

The east leaf and west leaf will start to raise:

Green “WEST LEAF” and “EAST LEAF” FULL CLOSED indicating lights are de-energized.

“WEST LEAF” and “EAST LEAF” SPAN POSITION indicator position arrow follows the angle of the raising bridge leaf relative to its fully lowered position.

“WEST LEAF” and “EAST LEAF” KILOWATTS meters fluctuate between 0kW to approximately 200kW.

The east leaf and west leaf will raise to 6°: White “WEST LEAF” and “EAST LEAF” NEARLY CLOSED indicating light is energized then de-energizes as the east leaf and west leaf continue raising.

The east leaf and west leaf will raise to 65°: White “WEST LEAF” and “EAST LEAF” NEARLY OPEN indicating light is energized and then de-energized as the east leaf and west leaf continue raising.

The east leaf and west leaf will raise to 70°: White “WEST LEAF” and “EAST LEAF” FULL OPEN indicating lights are energized.

The east leaf and west leaf stop moving.

Amber “WEST LEAF” MTR 1 RUNNING (or MTR2) is de-energized. Amber “EAST LEAF” MTR 1 RUNNING (or MTR2) is de-energized.

When the Foot Switch pedal is released the Red “WEST LEAF” BRAKES RELEASED and Red “EAST LEAF” BRAKES RELEASED indicating lights are de-energized; and Green “WEST LEAF” BRAKES SET and Green “EAST LEAF” BRAKES SET indicating lights are energized.

THE END OF OPENING OPERATIONS
2.6.2 Closing the Bridge

<table>
<thead>
<tr>
<th>ACTION</th>
<th>OPERATOR ACTION</th>
<th>RESULT</th>
<th>TROUBLESHOOTING</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Prior to Closing the Bridge, the control desk will have the following indicating lights illuminated:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>White NAVIGATION LIGHTS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Red CENTER LOCK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Red NW GATE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Red SW GATE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Green “WEST LEAF” BRAKES SET</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>White “WEST LEAF” FULL OPEN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Green “EAST LEAF” BRAKES SET</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>White “EAST LEAF” FULL OPEN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>Red NE GATE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>Red SE GATE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>Red TRAFFIC SIGNALS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td>Green “MAIN BREAKER” ON</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td>Green “TRANSFER SWITCH” NORMAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.</td>
<td>White “CONTROL POWER” ON</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Visually verify that all marine vessels are clear of the bridge area.</td>
<td>OK to proceed if clear.</td>
<td>If bridge waterway area is not clear: Delay closing until clear.</td>
</tr>
<tr>
<td>ACTION</td>
<td>OPERATOR ACTION</td>
<td>RESULT</td>
<td>TROUBLESHOOTING</td>
</tr>
<tr>
<td>--------</td>
<td>-----------------</td>
<td>--------</td>
<td>-----------------</td>
</tr>
<tr>
<td>7</td>
<td>Place your foot in the floor mounted Foot Switch and depress the pedal with your foot. Depress and release the Green CLOSE push button.</td>
<td>When the Foot Switch pedal is depressed the Red “WEST LEAF” BRAKES RELEASED and Red “EAST LEAF” BRAKES RELEASED indicating lights are energized; and Green “WEST LEAF” BRAKES SET and Green “EAST LEAF” BRAKES SET indicating lights are de-energized. When the Green CLOSE push button is depressed and released: Amber “WEST LEAF” MTR 1 RUNNING (or MTR2) is energized. Amber “EAST LEAF” MTR 1 RUNNING (or MTR2) is energized. The PLC controller will alternate which motor operates between each operation. The east leaf and west leaf will start to lower: Green “WEST LEAF” and “EAST LEAF” FULL OPEN indicating lights are de-energized. “WEST LEAF” and “EAST LEAF” SPAN POSITION indicator position arrow follows the angle of the closing bridge leaf relative to its fully lowered position. “WEST LEAF” and “EAST LEAF” KILOWATTS meters fluctuate between 0kW to approximately 200kW. The east leaf and west leaf will lower to 65°: White “WEST LEAF” and “EAST LEAF” NEARLY OPEN indicating light is energized then de-energizes as the east leaf and west leaf continue lowering. The east leaf and west leaf will lower to 6°: White “WEST LEAF” and “EAST LEAF” NEARLY CLOSED indicating light is energized and then de-energizes as the east leaf and west leaf continue lowering. The east leaf and west leaf will lower to 0°: White “WEST LEAF” and “EAST LEAF” FULLY CLOSED indicating lights are energized. The east leaf and west leaf stops moving. Amber “WEST LEAF” MTR 1 RUNNING (or MTR2) is de-energized. Amber “EAST LEAF” MTR 1 RUNNING (or MTR2) is de-energized. When the Foot Switch pedal is released the Red “WEST LEAF” BRAKES RELEASED and Red “EAST LEAF” BRAKES RELEASED indicating lights are de-energized; and Green “WEST LEAF” BRAKES SET and Green “EAST LEAF” BRAKES SET indicating lights are energized.</td>
<td>If indicating lights do not energize per RESULT and if the lamp test determines the light is operable and it does not energize, or if a light does not de-energize per RESULT: -Call CoT and notify the vessel of the delay. If the bridge leaf will not lower or stops lowering once started (before the Fully Closed position): -Call CoT and notify the vessel of the delay.</td>
</tr>
<tr>
<td>ACTION</td>
<td>OPERATOR ACTION</td>
<td>RESULT</td>
<td>TROUBLESHOOTING</td>
</tr>
<tr>
<td>--------</td>
<td>-----------------</td>
<td>--------</td>
<td>-----------------</td>
</tr>
<tr>
<td></td>
<td>Visually verify that the bridge is full closed.</td>
<td>Immediately proceed to Action 8 if the bridge is fully closed.</td>
<td>If bridge is not fully closed: -Repeat Action 7.</td>
</tr>
</tbody>
</table>
| 8 | Turn and release the “CENTER LOCK” switch to the LOCK position. | Green “CENTER LOCK” indicating light is energized.
Red “CENTER LOCK” indicating light is de-energized. | If indicating lights do not energize per RESULT and if the lamp test determines the light is operable and it does not energize, or if a light does not de-energize per RESULT:
-Call CoT.
-See Section 2.7.2 “Procedure to Manually Operate the Center Locks.” |
| | Visually verify that off going gate areas are clear of people and bicycles. | OK to proceed to ACTION 9 if off going gate areas are clear. | If off going gate areas are not clear:
-Delay until clear. |
| 9 | Turn and release the off going gate “NW GATE” and the off going gate “SE GATE” switches to the RAISE position. | Green “NW GATE” indicating light is energized.
Green “SE GATE” indicating light is energized.
Red “NW GATE” indicating light is de-energized.
Red “SE GATE” indicating light is de-energized.
off going gate arms raise. | If indicating lights do not energize per RESULT and if the indicating light test determines the light is operable and it does not energize, or if a light does not de-energize per RESULT:
-Note inoperable indicating light and proceed to visual verification. |
| | Visually verify that the off going gates are fully raised.
Check that oncoming gate areas are clear of people and bicycles. | OK to proceed to ACTION 10 if oncoming gate areas are clear and off going gates are fully raised. | If off going gates are not fully raised:
-Call the CoT and notify the vessel of the delay.
-Manually raise the Gate. See Section 2.8.1 “Procedure to Manually Operate the Gate.”
If areas are not clear:
-Delay until clear. |
LEGEND:

- **GREEN LIGHT**: Energized, De-energized, Energized due to current action, De-energized due to current action
- **AMBER LIGHT**: Energized, De-energized, Energized due to current action, De-energized due to current action
- **RED LIGHT**: Energized, De-energized, Energized due to current action, De-energized due to current action
- **WHITE LIGHT**: Energized, De-energized, Energized due to current action, De-energized due to current action

HYLEBOS BRIDGE CONTROL DESK

Actions 10 & 11

On coming gates and traffic signals
<table>
<thead>
<tr>
<th>ACTION</th>
<th>OPERATOR ACTION</th>
<th>RESULT</th>
<th>TROUBLESHOOTING</th>
</tr>
</thead>
</table>
| 10 | Turn and release the oncoming gate “NE GATE” and the oncoming gate “SW GATE” switches to the RAISE position. | Gongs start sounding.
Green “NE GATE” indicating light is energized.
Green “SW GATE” indicating light is energized.
Red “NE GATE” indicating light is de-energized.
Red “SW GATE” indicating light is de-energized.
Oncoming gate arms raise.
Gongs stop sounding when fully raised. | If indicating lights do not energize per RESULT and if the indicating light test determines the light is operable and it does not energize, or if a light does not de-energize per RESULT:
-Note inoperable indicating light and proceed to visual verification. |
| | Visually verify that oncoming gates are fully raised. | OK to proceed to ACTION 11 when oncoming gates are fully raised. | If either oncoming gate is not fully raised:
-Call the CoT.
-Manually raise the oncoming gate. See Section 2.8.1 “Procedure to Manually Operate the Gates.” |
| 11 | Press and release the “TRAFFIC SIGNALS”
Green GO push button. | **Green** “TRAFFIC SIGNALS” indicating light is energized.
Red “TRAFFIC SIGNALS” indicating light de-energizes.
Traffic signals on the bridge approach energize changing from red to green. | If indicating lights do not energize per RESULT and if the indicating light test determines the light is operable and it does not energize, or if a light does not de-energize per RESULT:
-Call CoT. |
<table>
<thead>
<tr>
<th>ACTION</th>
<th>OPERATOR ACTION</th>
<th>RESULT</th>
<th>TROUBLESHOOTING</th>
</tr>
</thead>
</table>
| 12 | Turn “CONTROL POWER” key switch to OFF and release the switch, allowing it to stay in the OFF position. | **White** “CONTROL POWER” ON indicating light is de-energized. **Green** “TRANSFER SWITCH” NORMAL indicating light is de-energized. **Green** TRAFFIC SIGNALS indicating light is de-energized. **Green** NW GATE, SW GATE, NE GATE, SE GATE indicating lights are de-energized. **Green** “WEST LEAF” BRAKES SET indicating light is de-energized. **Green** “WEST LEAF” FULL CLOSED indicating light is de-energized. **Green** “EAST LEAF” BRAKES SET indicating light is de-energized. **Green** “EAST LEAF” FULL CLOSED indicating light is de-energized. **Green** CENTER LOCK indicating light is de-energized. | If indicating lights do not turn off:
Notify CoT. |

THE END OF CLOSING OPERATIONS

Control Desk Returns to Pre-Operation Status
2.7 TROUBLESHOOTING AND CORRECTIVE ACTION

This section provides corrective action procedures for a power outage, provides information on bypass operation, provides troubleshooting and corrective action procedures for gate failure, center lock failure, and leaf operation failure.

2.7.1 Procedure to Manually Operate the Gates

This troubleshooting section explains how to manually operate the gates.

The bridge control system will not allow the off going gates to raise until the center lock is in the LOCK position. Do not manually raise the off going gate unless the center lock is in the LOCK position.

The bridge control system will not allow the oncoming gates to raise until the off going gates are FULLY RAISED. Do not manually raise the oncoming gates unless the off going gates are FULLY RAISED.

Perform the following steps to manually raise or lower the gate:

1. Contact CoT to let them know that there is a gate failure. The personnel at the CoT will notify the appropriate CoT maintenance crew of the failure.

2. The gate housing is locked. The **Operator’s key** will open a lock box mounted to the housing. The key to open the housing is located in the **lock box**.

3. Go to the gate and open the housing on the sidewalk side.

4. Disconnect power in the housing by flipping the disconnect switch to OFF.

 CAUTION

 Failure to switch off the disconnect could result in serious injury as the motor may start automatically.

5. Release the motor brake by rotating the knob on top of the brake cover.

6. Take the hand crank from the inside of the housing where it is mounted.

7. Place hand crank on the motor shaft extension. In order to raise the arm, turn the hand crank to raise the arm. DO NOT OPEN PAST 90 DEGREES. In order to lower the arm, turn the hand crank to lower the arm. The direction of rotation is labeled on the motor shaft.

8. Reset the motor brake by rotating the knob on top of the brake cover back to its original position.

9. Return the hand crank to its mount on the inside of the housing.

10. Reconnect power in the housing by flipping the disconnect switch to ON.

11. Close the housing and lock the access door.

12. Return to the Bridge Control Tower and complete the bridge operation.
2.7.2 Procedure to Manually Operate the End Lock

This troubleshooting section explains how to manually operate the center lock.

The bridge control system will not allow the center lock to LOCK until the bridge leaf is in the full closed position. Do not attempt to lock the center lock unless the bridge leaf is in the full closed position.

The bridge control system will not allow the center lock to UNLOCK until all the gates are lowered and traffic is stopped. Do not unlock the center lock unless all the gates are down or traffic is fully stopped by a flagger and barricade at each inoperable gate.

1. Contact CoT to let them know that there is a lock failure. The personnel at the CoT will notify the appropriate CoT maintenance crew of the failure.

2. Go to the sidewalk directly above the center lock motor. Use the Operator’s key to unlock the hatch. The key to open the housing is located in the lock box. Open the hatch and secure it open.

3. Go to the center lock platform located below the west bridge leaf toe, and proceed to the center lock that is not operating properly. Each center lock is operated independently.

4. Turn the center lock motor disconnect switch to the OFF position.

CAUTION

Failure to switch off the disconnect could result in serious injury as the motor may start automatically.

5. The procedure to manually operate the center lock is posted on the center lock unit.

6. Release the brake by pulling the motor brake release arm.

7. Unlock the brake wheel engagement lever and push the brake wheel down until it locks into the gearing.

8. Turn hand wheel to crank the shaft to lock or unlock the center lock.

9. Visually verify that the center lock is fully locked or fully unlocked.

10. Pull the hand wheel to disengage the wheel from the gearing and lock the wheel engagement lever.

11. Set the brake by pushing the motor brake release arm.

12. Close and lock the hatch.

13. Return to the Bridge Control Tower and complete the bridge operation.

14. Contact CoT to verify that power should be returned to the center locks. With CoT approval, go to the center lock platform located below the bridge leaf toe, and turn the center lock motor disconnect switch to the ON position.
2.7.3 Bypass Operation

CAUTION

Bypass switches are for emergency situations only. If bypass switch operation is required, do not continue with bridge opening without contacting the City of Tacoma.

The control desk is equipped with one bypass key operate switch located on the control desk at the lower right side. The use of the bypass switches allows for certain operations that an interlock would normally prevent.

The following is a list of alarms that indicate a bypass can be activated:

<table>
<thead>
<tr>
<th>Alarm</th>
<th>Acknowledge Alarm</th>
<th>Bypass Alarm</th>
</tr>
</thead>
<tbody>
<tr>
<td>CENTER LOCK UNLOCK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Center Lock CL-2 Unlock Trouble</td>
<td>Center Lock CL-2 Unlock Trouble Ack</td>
<td>Center Lock CL-2 Unlock Bypass On</td>
</tr>
<tr>
<td>Center Lock CL-1 Unlock Trouble</td>
<td>Center Lock CL-1 Unlock Trouble Ack</td>
<td>Center Lock CL-1 Unlock Bypass On</td>
</tr>
<tr>
<td>CENTER LOCK LOCK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Center Lock CL-1 Lock Trouble</td>
<td>Center Lock CL-1 Lock Trouble Ack</td>
<td>Center Lock CL-1 Lock Bypass On</td>
</tr>
<tr>
<td>Center Lock CL-2 Lock Trouble</td>
<td>Center Lock CL-2 Lock Trouble Ack</td>
<td>Center Lock CL-2 Lock Bypass On</td>
</tr>
<tr>
<td>GATE RAISE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Traffic Gate TG-E1 Raise Trouble</td>
<td>Traffic Gate TG-E1 Raise Trouble Ack</td>
<td>Traffic Gate TG-E1 Raise Bypass On</td>
</tr>
<tr>
<td>Traffic Gate TG-E2 Raise Trouble</td>
<td>Traffic Gate TG-E2 Raise Trouble Ack</td>
<td>Traffic Gate TG-E2 Raise Bypass On</td>
</tr>
<tr>
<td>Traffic Gate TG-W1 Raise Trouble</td>
<td>Traffic Gate TG-W1 Raise Trouble Ack</td>
<td>Traffic Gate TG-W1 Raise Bypass On</td>
</tr>
<tr>
<td>Traffic Gate TG-W2 Raise Trouble</td>
<td>Traffic Gate TG-W2 Raise Trouble Ack</td>
<td>Traffic Gate TG-W2 Raise Bypass On</td>
</tr>
<tr>
<td>GATE LOWER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Traffic Gate TG-E1 Lower Trouble</td>
<td>Traffic Gate TG-E1 Lower Trouble Ack</td>
<td>Traffic Gate TG-E1 Lower Bypass On</td>
</tr>
<tr>
<td>Traffic Gate TG-E2 Lower Trouble</td>
<td>Traffic Gate TG-E2 Lower Trouble Ack</td>
<td>Traffic Gate TG-E2 Lower Bypass On</td>
</tr>
<tr>
<td>Traffic Gate TG-W1 Lower Trouble</td>
<td>Traffic Gate TG-W1 Lower Trouble Ack</td>
<td>Traffic Gate TG-W1 Lower Bypass On</td>
</tr>
<tr>
<td>Traffic Gate TG-W2 Lower Trouble</td>
<td>Traffic Gate TG-W2 Lower Trouble Ack</td>
<td>Traffic Gate TG-W2 Lower Bypass On</td>
</tr>
<tr>
<td>LEAF SEATING</td>
<td></td>
<td></td>
</tr>
<tr>
<td>East Leaf Seating Trouble</td>
<td>East Leaf Seating Trouble Ack</td>
<td>East Leaf Seating Bypass On</td>
</tr>
<tr>
<td>West Leaf Seating Trouble</td>
<td>West Leaf Seating Trouble Ack</td>
<td>West Leaf Seating Bypass On</td>
</tr>
</tbody>
</table>

In order to use a bypass switch:

1. Only use a bypass switch as directed below. Verify that all conditions in the instructions are met.
2. Note what step in the operation requires a bypass.
3. If a bypass is required, the PLC Allen Bradley HMI display screen will provide an alarm after attempting an operation. The alarms that can be bypassed are listed above in the table heading ‘Alarm.’
4. Read the PLC Allen Bradley HMI display screen to verify the action that requires a bypass.
5. Visually verify the state of equipment allows it to be bypass.
6. Manually press and release the ‘ALARM ACKNOWLEDGE’ Black pushbutton. The PLC Allen Bradley HMI display screen will provide an alarm after pushing the pushbutton. The acknowledge
alarms are listed above in the table heading ‘Acknowledge Alarm.’

7. Turn and release the key operated bypass switch.

8. The PLC Allen Bradley HMI display screen will provide an alarm after turning the key switch. The bypass alarms are listed above in the table heading ‘Bypass Alarm.’

9. After the Bypass Alarm message has been displayed on the PLC Allen Bradley HMI display screen, proceed with the next step in the operation.

Bridge Operator bypasses are as follows:

Bypass: CENTER LOCK UNLOCK

WARNING

Visually verify that both center locks are in the UNLOCK position before operating the CENTER LOCK CL-1 UNLOCK TROUBLE or CENTER LOCK CL-2 UNLOCK TROUBLE bypass.

If either of the center lock unlocked limit switches fails, this will provide an interlock to prevent the continued operation of the bridge by preventing the leaf drives from operating. Verify that the both center locks are in the UNLOCK position. When this bypass is used, the bridge operator can operate the leaf drives despite the failure.

Bypass: CENTER LOCK LOCK

WARNING

Visually verify that both center locks are in the LOCK position before operating the CENTER LOCK CL-1 LOCK TROUBLE or CENTER LOCK CL-2 LOCK TROUBLE bypass.

If the center lock locked limit switch fails, this will provide an interlock to prevent the continued operation of the bridge by preventing the gates from operating. Verify that the center lock is in the LOCK position. When this bypass is used, the bridge operator can raise the gates despite the failed limit switch.

Bypass: GATES RAISE

WARNING

Visually verify that all gate arms are clear of traffic before operating the TRAFFIC GATE TG-E1 RAISE TROUBLE, TRAFFIC GATE TG-E2 RAISE TROUBLE, TRAFFIC GATE TG-W1 RAISE TROUBLE, or TRAFFIC GATE TG-W2 RAISE TROUBLE bypass. If any gate arm is not clear of traffic proceed to Section 2.7.1 “Procedure to Manually Operate the Gate.”

When any gate rotary limit switch has a failure, this will provide an interlock to prevent the traffic warning signals from turning off. Verify that the gate arms are raised and clear of traffic. When this bypass is used, the bridge operator can turn off the warning signals and release vehicular traffic, despite the limit switch failure.
Bypass: GATES LOWER

WARNING

Visually verify that all gates are down before operating the TRAFFIC GATE TG-E1 LOWER TROUBLE, TRAFFIC GATE TG-E2 LOWER TROUBLE, TRAFFIC GATE TG-W1 LOWER TROUBLE, or TRAFFIC GATE TG-W2 LOWER TROUBLE bypass. If a gate is not down provide a flagger and a barricade to stop traffic at that location.

When any the gates rotary limit switch has a failure, this will provide an interlock to prevent the continued operation of the bridge by preventing the center lock from operating. Verify that the gate arms are lowered and traffic is safely stopped. When this bypass switch is used, the bridge operator can unlock the center lock and open the bridge, despite the limit switch failure.

Bypass: LEAF SEATING

WARNING

Visually verify the bridge leaf is fully seated before operating the EAST LEAF SEATING TROUBLE or WEST LEAF SEATING TROUBLE bypass.

If the leaf full closed limit switch fails, this will provide an interlock to prevent the center lock from operating. Verify that the each bridge leaf is full closed. When this bypass switch is used, the bridge operator can lock the center locks despite the failed limit switch.

2.7.4 Power Outage and Manual Transfer Switch Operation

A power outage may occur at any time. The bridge is equipped with a diesel generator rated to power the equipment, such as lights and radios in the control tower, and rated to fully operate the Hylebos Bridge. If a power outage occurs:

1. Notify the Power Company of the power outage. Inquire about the anticipated time period that the outage will be in effect.

2. Notify CoT immediately and give a status report.

3. If the bridge will not be available for opening or becomes disabled during a scheduled opening time, notify the vessel, the Coast Guard and City of Tacoma immediately.

Operation during a power outage:

1. When a power outage occurs the bridge will lose power momentarily. If the power outage occurs during an operation, stop the operation you are attempting.

2. The control system will automatically attempt to start the generator. The “GENERATOR” RUNNING Amber indicating light on the control desk will illuminate when the generator is running.

3. Once the generator is running, the automatic transfer switch will switch to generator. The “TRANSFER SWITCH” NORMAL Green indicating light will de-energize and the “TRANSFER SWITCH” GENERATOR Amber indicating light will illuminate.
4. If you were in the middle of an action when power was lost, resume the last action you were taking to complete the bridge operation.

2.7.5 Single Leaf Operation

There may be time when it is required to operate a single leaf of the bridge.

1. Determine which leaf is not to be operated.

2. Turn the key operated DRIVE LOCKOUT switch for that leaf from OFF position to the ON position. The DRIVE LOCKOUT Red indicating light for that leaf will flash.

3. That leaf is now locked out of operation, and the operator can operate the leaf that is not locked out. Follow the steps in the Normal Bridge Operation to completely raise and lower the leaf.

4. Once the leaf operation is complete, turn the key operated DRIVE LOCKOUT switch for the locked out leaf from ON position to the OFF position. The DRIVE LOCKOUT Red indicating light for that leaf will de-energize.

2.7.6 PLC Allen Bradley HMI Display Screen Alarm List

The alarms in this section cannot be bypassed and may prevent operation. If the alarms appear on the PLC Allen Bradley HMI display screen do not continue with bridge opening without contacting the City of Tacoma.

The following is a list of alarms that the PLC Allen Bradley HMI display screen may display:

- CENTER LOCK CL-1 NOT READY
- CENTER LOCK CL-1 STARTER TROUBLE
- CENTER LOCK CL-2 NOT READY
- CENTER LOCK CL-2 STARTER TROUBLE
- DRIVE E1 NOT READY
- DRIVE E1 TROUBLE
- DRIVE E2 NOT READY
- DRIVE E2 TROUBLE
- DRIVE W1 NOT READY
- DRIVE W1 TROUBLE
- DRIVE W2 NOT READY
- DRIVE W2 TROUBLE
- EAST FULL OPEN LIMIT SWITCH TROUBLE
- EAST NEARLY CLSD LIMIT SWITCH TROUBLE
- EAST NEARLY OPEN LIMIT SWITCH TROUBLE
- EAST POSITION SENSOR TROUBLE
- GENERATOR TROUBLE
- MACH BRAKE MAB-E1 DID NOT RELEASE
- MACH BRAKE MAB-E1 DID NOT SET
- MACH BRAKE MAB-E1 MAN. RELEASED
- MACH BRAKE MAB-E1 NOT READY
- MACH BRAKE MAB-E1 TROUBLE
- MACH BRAKE MAB-E2 DID NOT RELEASE
- MACH BRAKE MAB-E2 DID NOT SET
- MACH BRAKE MAB-E2 MAN. RELEASED
- MACH BRAKE MAB-E2 NOT READY
- MACH BRAKE MAB-E2 TROUBLE
- MACH BRAKE MAB-W1 DID NOT RELEASE
- MACH BRAKE MAB-W1 DID NOT SET
- MACH BRAKE MAB-W1 MAN. RELEASED
- MACH BRAKE MAB-W1 NOT READY
- MACH BRAKE MAB-W1 TROUBLE
- MACH BRAKE MAB-W2 DID NOT RELEASE
- MACH BRAKE MAB-W2 DID NOT SET
- MACH BRAKE MAB-W2 MAN. RELEASED
- MACH BRAKE MAB-W2 NOT READY
- MACH BRAKE MAB-W2 TROUBLE
- MAIN BREAKER OPEN
- MOTOR BRAKE MOB-E1 DID NOT RELEASE
- MOTOR BRAKE MOB-E1 DID NOT SET
• MOTOR BRAKE MOB-E1 MAN. RELEASED
• MOTOR BRAKE MOB-E1 NOT READY
• MOTOR BRAKE MOB-E1 TROUBLE
• MOTOR BRAKE MOB-E2 DID NOT RELEASE
• MOTOR BRAKE MOB-E2 DID NOT SET
• MOTOR BRAKE MOB-E2 MAN. RELEASED
• MOTOR BRAKE MOB-E2 NOT READY
• MOTOR BRAKE MOB-E2 TROUBLE
• MOTOR BRAKE MOB-W1 DID NOT RELEASE
• MOTOR BRAKE MOB-W1 DID NOT SET
• MOTOR BRAKE MOB-W1 MAN. RELEASED
• MOTOR BRAKE MOB-W1 NOT READY
• MOTOR BRAKE MOB-W1 TROUBLE
• MOTOR BRAKE MOB-W2 DID NOT RELEASE
• MOTOR BRAKE MOB-W2 DID NOT SET
• MOTOR BRAKE MOB-W2 MAN. RELEASED
• MOTOR BRAKE MOB-W2 NOT READY
• MOTOR BRAKE MOB-W2 TROUBLE
• WEST FULL OPEN LIMIT SWITCH TROUBLE
• WEST NEARLY CLSD LIMIT SWITCH TROUBLE
• WEST NEARLY OPEN LIMIT SWITCH TROUBLE
• WEST POSITION CENSOR TROUBLE
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>PURPOSE</td>
<td>3-3</td>
</tr>
<tr>
<td>3.2</td>
<td>LOCKOUT/TAGOUT PROCEDURE</td>
<td>3-3</td>
</tr>
<tr>
<td>3.3</td>
<td>HOW THIS SECTION IS STRUCTURED</td>
<td>3-3</td>
</tr>
<tr>
<td>3.4</td>
<td>TRUNNION BEARING AND SPAN SUPPORT SYSTEM</td>
<td>3-3</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Main Trunnion Assemblies</td>
<td>3-3</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Live Load Bearings</td>
<td>3-4</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Air Buffer Assemblies</td>
<td>3-5</td>
</tr>
<tr>
<td>3.5</td>
<td>SPAN DRIVE MACHINERY</td>
<td>3-6</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Motor and Machinery Brakes</td>
<td>3-6</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Motor Couplings</td>
<td>3-7</td>
</tr>
<tr>
<td>3.5.3</td>
<td>Floating Shaft Couplings and Floating Shafts</td>
<td>3-7</td>
</tr>
<tr>
<td>3.5.4</td>
<td>Primary and Secondary Speed Reducers</td>
<td>3-8</td>
</tr>
<tr>
<td>3.5.5</td>
<td>Main Pinions and Rack Gears</td>
<td>3-9</td>
</tr>
<tr>
<td>3.6</td>
<td>CENTER LOCK MACHINERY</td>
<td>3-10</td>
</tr>
<tr>
<td>3.6.1</td>
<td>Lock Bar Actuator</td>
<td>3-10</td>
</tr>
<tr>
<td>3.6.2</td>
<td>Lock Bar Guide Blocks, Lock Bars and Receivers</td>
<td>3-11</td>
</tr>
<tr>
<td>3.7</td>
<td>GATES</td>
<td>3-12</td>
</tr>
<tr>
<td>3.7.1</td>
<td>Gates</td>
<td>3-12</td>
</tr>
<tr>
<td>3.8</td>
<td>ELECTRICAL POWER SYSTEMS</td>
<td>3-13</td>
</tr>
<tr>
<td>3.8.1</td>
<td>Lighting Panel (LP) and Motor Control Center (MCC)</td>
<td>3-13</td>
</tr>
<tr>
<td>3.8.2</td>
<td>Motor Controllers and Contactors</td>
<td>3-14</td>
</tr>
<tr>
<td>3.8.3</td>
<td>Safety Switches, Disconnects, and Enclosed Circuit Breakers</td>
<td>3-17</td>
</tr>
<tr>
<td>3.8.4</td>
<td>Fuses</td>
<td>3-18</td>
</tr>
<tr>
<td>3.8.5</td>
<td>Lighting Contactors and Relays</td>
<td>3-19</td>
</tr>
<tr>
<td>3.8.6</td>
<td>Electrical Conductors</td>
<td>3-20</td>
</tr>
<tr>
<td>3.8.7</td>
<td>Submarine Cable System</td>
<td>3-20</td>
</tr>
<tr>
<td>3.8.8</td>
<td>Resistor Banks</td>
<td>3-21</td>
</tr>
<tr>
<td>3.8.9</td>
<td>Motor Drives</td>
<td>3-22</td>
</tr>
<tr>
<td>3.8.10</td>
<td>Transformers</td>
<td>3-23</td>
</tr>
<tr>
<td>3.8.11</td>
<td>Incoming Service, Automatic Transfer Switch Panel, and Generator</td>
<td>3-24</td>
</tr>
</tbody>
</table>
3.9 LIGHTING SYSTEMS .. 3-24
 3.9.1 Navigation Lights ... 3-25
 3.9.2 Traffic Signals .. 3-26
 3.9.3 Gate Lights ... 3-26
 3.9.4 Interior and Exterior Lights .. 3-27

3.10 ELECTRIC MOTORS, THRUSTOR BRAKE MOTORS, AND SOLENOID BRAKES 3-28
 3.10.1.1 Electric Motors .. 3-28
 3.10.2 Thrustor Brake Motors ... 3-30
 3.10.3 Solenoid Brakes ... 3-31

3.11 MISCELLANEOUS ELECTRICAL SYSTEMS .. 3-33
 3.11.1 Traffic Gongs ... 3-33
 3.11.2 PA Speaker Intercom .. 3-33
 3.11.3 Fire Alarm System .. 3-34
 3.11.4 Intrusion Alarm System .. 3-35
 3.11.5 Heating .. 3-35

3.12 CONTROL SYSTEMS ... 3-36
 3.12.1 Control Desk .. 3-36
 3.12.2 Control Panels ... 3-37
 3.12.3 Meters and Instruments ... 3-38
 3.12.4 Rotary Limit Switches .. 3-39
 3.12.5 Lever Operated Limit Switches .. 3-40
 3.12.6 Position Transmitters ... 3-43
3.1 PURPOSE

Guidelines are set up for periodic cleaning, adjustment, or servicing of specific items. For each item, the frequency of maintenance is based on recommendations by the manufacturer’s guidelines and generally established good practice.

3.2 LOCKOUT/TAGOUT PROCEDURE

The lockout/tagout procedure is that no electrical apparatus or electrically driven apparatus should be worked on while energized. The appropriate circuit breakers or disconnect handles for the equipment being worked on shall be locked in the open (off) position and tagged. The appropriate, immediate upstream circuit breaker or protective device should always be used to electrically isolate the equipment. A sign should be posted on the control desk to identify that the devices are tagged out of service. A contact person shall be identified on the tag.

3.3 HOW THIS SECTION IS STRUCTURED

The maintenance section is divided into subsections that group equipment by type. Each subsection describes an equipment item, the number of such items, location, the maintenance frequency, and describes maintenance procedures. Photo references are included where applicable.

3.4 TRUNNION BEARING AND SPAN SUPPORT SYSTEM

Each bascule span is supported by two simply supported trunnion shafts. Each trunnion shaft is supported by two bronze bushing bearing assemblies. The two trunnion shafts on the same bascule span are collinear and each bascule span rotates around the axis formed by its two trunnion shafts. The centerline to centerline horizontal distance between the two bascule spans is 216'-10".

There are two live load support bearings on each bascule span attached to the lower chord of each bascule truss approximately 12 feet forward of the trunnion centerline. In the down position, the live load bearings contact strike plates mounted to the front faces of the bascule pier walls. The function of the live load bearing system is to transfer a portion of live load on the on the bascule span to the forward sections of the bascule piers.

Each bascule span is balanced by a large mass counterweight located rearward of the trunnion assemblies.

There are two air buffer cylinders mounted to the bascule pier walls behind the each bascule span counterweight. The air buffers contact the counterweights near the span fully closed position and aid in smooth seating of the bascule spans.

3.4.1 Main Trunnion Assemblies

Description

Each main trunnion assembly consists of two main trunnion bearings and one main trunnion shaft. The main trunnion bearings are split sleeve type journal bearings. The bearing caps and bases are cast steel with bronze split bushings. Lubrication fittings in the bearing caps and trunnion shaft ends provide grease to the trunnion shaft/bushing bearing bearing surface.
The trunnion bearings on the West bascule span are original. The trunnion bearings on the East bascule span were replaced in 2011 and have additional lubrication fittings.

Refer to photo numbered 4-3 and 4-4.

Number of Items & Location
There are four main trunnion assemblies, one located at each bascule span truss.

Maintenance Schedule and Procedures

3 Months
- When possible, lubricate the trunnion shafts while rotating the bascule spans. Pump in Chevron Moly EP2 grease or equal into each grease fitting in the trunnion shafts until old grease is purged from the trunnion shaft journal/bushing interface. Wipe away purged grease.
- When possible, lubricate the trunnion shafts while rotating the bascule spans. Pump in Chevron Moly EP2 grease or equal into each trunnion bearing cap grease fittings until old grease is purged from the trunnion shaft journal/bushing interface. Wipe away purged grease.

Annually
- Check housing and supporting frame for signs of corrosion. Thoroughly clean grease and debris from the exterior of the trunnion assemblies and spot paint, as necessary.
- Check housing cap bolts and base bolts. Torque as necessary.
- Perform a visual and auditory examination of the bearings during operation. Check for unusual movements, binding and abnormal sounds.

3.4.2 Live Load Bearings

Description
Each live load bearing consists of a live load shoe mounted to the bascule truss and a strike plate assembly mounted to the bascule pier.

Each strike plate is bolted to a cast steel base with shims for fine adjustment of the movable span in the closed position.

Refer to photo numbered 4-4.

Number of Items & Location
There are four live load bearings, one located below each lower bascule truss chord, each pair being approximately 12 feet forward of the trunnion centerline for their respective bascule spans.

Maintenance Schedule and Procedures

2 Months
- Check that the strike plates are in hard contact with their live load shoes when the span is closed and when there is no traffic on the bridge. There should be no vertical movement at the live load bearings when traffic crosses the span. If clearance or movement is present, add shims as necessary.
Annually

- Check that all fasteners are tight and corrosion free. Visually inspect the live load shoes for cracks, corrosion and deteriorated grout.
- Check the contacting surfaces between the strike plates and live load shoes for deformations and wear. There should be no rust on the contact areas.
- Clean dirt and debris from the bearing assembly contact surfaces.
- If necessary, shim the strike plates to provide full contact with the live load shoes and to adjust the bascule span tip elevation. The bascule leaf should be slightly span heavy when seated to maintain positive contact at the live load bearings assemblies.

3.4.3 Air Buffer Assemblies

Description
Each bascule span is equipped with two air buffer assemblies. The air buffers function is to provide cushioning while seating the bascule spans at normal speed and also provide buffering if the bascule spans are traveling too fast when nearing the fully closed position.

Each air buffer cylinder is hung from a pin connection to the bascule pier behind the counterweight. Each air buffer assembly consists of the air buffer, mounts, air piping and associated valves and fittings.

As the bascule span nears the air buffers, the buffer rods make contact with strike plates mounted at the extreme rear of the counterweights.

Refer to photo numbered 4-5.

Number of Items & Location
There a total of four air buffers, two on the east and two on the west bascule piers. They are accessible from the doors the east and west electrical equipment rooms.

Maintenance Schedule and Procedures

3 Months

- Pump in Chevron Moly EP2 grease or approved equal into each grease fitting on the air buffer rod bearings until old grease is purged from the sleeves. Wipe away purged grease.
- Remove the pipe plugs and pump Chevron Moly EP2 grease or approved equal into each grease fitting on the air buffer upper pin connect until old grease is purged from the bearing assembly. Wipe away purged grease.
- Inspect the automatic oil lubricators and add XYZ Oil as necessary.

Annually

- Perform a complete visual and auditory examination of the air buffers during full bascule span operations to check for unusual movement, rod binding and sounds.
- Observe the air buffer cylinder in operation and confirm that adequate air pressure is being produced while the bascule spans are being seated. Adjust needle valve as necessary.
- Perform a complete visual inspection of the air buffer piping system.
3.5 SPAN DRIVE MACHINERY

The span drive machinery is the system of mechanical equipment used to raise and lower the bascule spans. The majority of the bridge machinery is located within the east and west side machinery rooms below the roadway level.

The span drive machinery consists of drive motors, motor and machinery brakes, primary differential speed reducers, secondary speed reducers, shafts, bearings, main drive pinions and operating racks – See Figures 1.2 and 1.3. See Section 3.10 for maintenance of electric drive motors.

Refer to photo numbered 4-6.

3.5.1 Motor and Machinery Brakes

Description

The motor and machinery brakes are thruster type brakes that are hydraulically released and spring set with an adjustable brake set delay and a hand release mechanism. Each brake assembly consists of a motor, a hydraulic actuator, a torque spring, a drum, brake shoes, mechanical linkages and limit switches. When the bascule spans are seated the all motor and machinery brakes are in the set position.

Refer to photos numbered 4-6, 4-7 and 4-8.

Number of Items & Location

There are two motor brakes located in both the east and west machinery rooms located at the rear of each span drive motor. There are two machinery brakes in both the east and west machinery rooms located on the input shaft of the primary differential speed reducer.

Maintenance Schedule and Procedures

WARNING

Use EXTREME CARE and ALWAYS REMOVE POWER from all pertinent electrical equipment before beginning maintenance. Refer to Section 3.2 LOCKOUT/TAGOUT AND OTHER SAFETY PROCEDURES.

Annually

☐ Check level of fluid in hydraulic reservoir, check for leakage of oil. Clean and repair as necessary. If oil is added, recheck level after the thruster pump mechanism has been operated under power at least twice, and if necessary, add additional oil to achieve the recommended level.

☐ Check hydraulic actuator height per the manufacturer’s recommendations and adjust as required.

☐ Inspect all brake shoes and drums for damage, wear, dust, dirt, grease and proper adjustment. Brake shoes should be replaced when lining thickness at the center of the shoe decreases to 1/8 inch in thickness. Maintain 3/64 inch clearance between brake shoe and brake wheel when the brake is released.
Inspect all mechanical linkage for wear, broken parts, tightness of bolts and nuts. Check for freedom of moving parts (no binding or sticking).

Check torque with calibrated torque wrench. Set the motor brakes to 140 ft-lb. and the machinery brakes to 175 ft-lb. Follow manufacturer’s specification for adjusting brakes.

Check for excessive heating of parts, evident by discoloration of metal parts, odor, corrosion, smooth operation and excessive vibration.

Five years

Change fluid in the thrustors using Chevron Turbine ISO 32 or approved equal.

3.5.2 Motor Couplings

Description
The motor couplings are flexible grid type couplings. A flexible grid connects the two coupling halves and provides protection against shock loads and vibration.

Refer to photo numbered 4-9.

Number of Items & Location
There are four motor couplings, two located in both the east and west machinery rooms. The motor couplings connect the 75 HP electric drive motors to the primary differential speed reducer.

Maintenance Schedule and Procedures

WARNING
Use EXTREME CARE and ALWAYS REMOVE POWER from all pertinent electrical equipment before beginning maintenance. Refer to Section 3.2 LOCKOUT/TAGOUT AND OTHER SAFETY PROCEDURES.

Annually

Observe for smooth operation. Check for vibration and unusual noises during operation.

Remove the two plugs in the coupling housing and install a grease fitting. Pump in Chevron Moly EP2 grease or approved equal into each motor coupling until old grease is purged from the coupling housing. Wipe away purged grease, remove grease fitting and re-install the grease plugs.

If grease leaks from the coupling housing, replace the seals or cover gaskets as required.

3.5.3 Floating Shaft Couplings and Floating Shafts

Description
The output shafts of the primary differential speed reducers transmit torque to the secondary speed reducers via steel floating shafts and floating shaft couplings. The floating shaft couplings are gear type couplings. A splined internal hub engages the coupling housing providing misalignment capabilities and torque transmission.
The floating shafts are hollow welded steel shafts spanning between the output couplings of the primary differential reducers to the input shaft of the secondary reducers. Since they are supported only at the ends by the coupling connections they are designated as “floating shafts.”

Refer to photo numbered 4-10.

Number of Items & Location

There are eight float shaft couplings, four located in both the east and west machinery rooms. There are four floating shafts, two located in both the east and west machinery rooms.

Maintenance Schedule and Procedures

WARNING

Use EXTREME CARE and ALWAYS REMOVE POWER from all pertinent electrical equipment before beginning maintenance. Refer to Section 3.2 LOCKOUT/TAGOUT AND OTHER SAFETY PROCEDURES.

Annually

- Observe all float shaft couplings and floating shafts for smooth operation. Check for vibration and unusual noises during operation. Check tightness of coupling connection bolts and tighten as necessary.
- Pump in Chevron Moly EP2 grease or approved equal into each floating shaft coupling as required until each coupling is full. Wipe away purged grease.
- Clean exterior surfaces of float shaft couplings and floating shafts of grease and debris and spot paint as required.

3.5.4 Primary and Secondary Speed Reducers

Description

The primary differential speed reducer receives the input power main drive motor to operate the bascule span. An internal differential gearing assembly equalizes the output torque transmitted to the secondary speed reducers, and therefore equalizes the torque transmitted to the bascule spans for smooth and even force transmission while operating the bascule spans. Motor torque is also increased and the shaft speed is decreased by the primary differential reducer.

The secondary speed reducer further increases the machinery system torque and decreases the shaft speed. Each secondary speed reducer has a single cantilevered output shaft. The main drive pinions are keyed to the output shafts of the secondary reducers.

All speed reducers are oil filled and they have automatic splash internal lubrication. The shaft bearings also require grease lubrication.

Refer to photos numbered 4-6, 4-10, 4-11 and 4-12.
Number of Items & Location

There are two differential primary speed reducers, one in both the east and west machinery rooms. There are four secondary speed reducers, two located outside the north and south walls of the east and west machinery rooms.

Maintenance Schedule and Procedures

WARNING

Use EXTREME CARE and ALWAYS REMOVE POWER from all pertinent electrical equipment before beginning maintenance. Refer to Section 3.2 LOCKOUT/TAGOUT AND OTHER SAFETY PROCEDURES.

3 Months

- Inspect housing of primary and secondary speed reducers for leaks and other abnormalities.
- Check tightness of all reducer mounting bolts. Torque as necessary.
- Check color and condition of dessicant breathers on the primary and secondary speed reducers. Replace breather cartridges as necessary.
- Using the drip sticks, check the oil level in the primary differential reducers. If low, correct oil level by adding AGMA 6FP ISO Grade 320 gear oil or approved equal as necessary.
- Using the drip sticks, check the oil level in the secondary reducers. If low, correct oil level by adding AGMA 8FP ISO Grade 680 gear oil or approved equal as necessary.
- Remove the plugs in the reducer shaft bearing housings and pump in Chevron Moly EP2 grease or approved equal into each shaft bearing cavity until the old grease is purged from each bearing housing. Wipe away purged grease and re-install the grease plugs.

Annually

- Remove all reducer inspection covers and visually inspect the condition of the internal gearing for abnormal gear tooth wear patterns, chips or cracks. Visually inspect shafts, shaft bearings and internal areas cracks, corrosion and wear.
- With span in motion, check for excessive vibration and unusual noises.

Five years

- Change the lubricating oil in the primary differential reducers using AGMA EP6 ISO 320 gear oil or approved equal.
- Change the lubricating oil in the secondary reducers using AGMA EP8 ISO 680 gear oil or approved equal.

3.5.5 Main Pinions and Rack Gears

Description

The main pinions are keyed to the output shafts of the secondary reducers. These pinions engage inside cut rack gear segments that are bolted to the trusses for the bascule spans. The rack pitch diameters coincide with the trunnion shaft centlines. Rotation of the main pinions and rack segments causes rotation of each bascule span about its trunnion axis.
Refer to photos numbered 4-6, 4-10, 4-11, 4-12 and 4-13.

Number of Items & Location
There are four main pinion and rack sets, two that drive both the east and west bascule spans.

Maintenance Schedule and Procedures

3 Months
- Lubricate all main pinion teeth and rack teeth with Mobiltac 375 Open Gear Grease or approved equal. Remove excess build up of old grease.

Annually
- Visually inspect all gear teeth for rust, cracking, excessive tooth wear and proper gear tooth alignment.
- Visually inspect rack to truss mounting bolts. Tighten loose bolts as required.
- Visually inspect the condition of the main pinion to shaft key and key seat. Inspect for cracks near the key seats and tightness of keys.
- With the bascule spans in motion check for excessive vibrations, binding and unusual noises through the complete range of span motion.

3.6 CENTER LOCK MACHINERY

The center lock machinery is a system of mechanical equipment used to transfer the shear load from passing vehicles from one bascule span to the other. The center locks also function to maintain a constant level joint between the bascule spans so that vehicles passage is smooth across the joint. There are two sets of center locks located at the bascule tips at the lower chords of the bascule trusses below the roadway deck.

Each center lock machinery assembly consists of a lock bar actuator, lock bar guide blocks, a lock bar and a lock bar receiver assembly – See Figure 1.2. There is also a manual hand crank handle at the rear of the lock bar actuator that can be utilized to operate each center lock in the event of a power outage or drive motor failure.

3.6.1 Lock Bar Actuator

Description
The lock bar actuator is a screw type linear actuator that retracts and extends each lock bar. Each lock bar actuator is trunnion base mounted to the lower bascule truss chords of the west bascule and each actuating rod is pin connected to the lock bars. Each lock bar actuator is manufactured complete with integral drive motor, enclosed gearing, a brake, screw actuator and internal limit switches.

Refer to photos numbered 4-14 and 4-15.

Number of Items and Location
There are two lock bar actuators, one for each center lock assembly. They are located at the bascule span tip of the west bascule and mounted to the lower truss chords of the bascule trusses.
Maintenance Schedule and Procedures

WARNING

Use EXTREME CARE and ALWAYS REMOVE POWER from all pertinent electrical equipment before beginning maintenance. Refer to Section 3.2 LOCKOUT/TAGOUT AND OTHER SAFETY PROCEDURES.

3 Months

- Visually inspect the lock bar actuators for proper alignment and smooth operation.
- Check tightness of all lock bar actuator mounting bolts. Torque as necessary.
- Pump in Chevron Moly EP2 grease or approved equal into each trunnion mount of the lock bar actuators. Wipe away purged greases.

Annually

- Observe for smooth operation. Check for vibration and unusual noises during operation.
- Verify that the manual handwheel system is functional by manually cycling each lock bar actuator through one complete retract/extend cycle.
- Grease the thrust unit with Chevron Moly EP2 grease or equal. Wipe away purged grease.
- If grease leaks from the actuator housing, replace the seal where leakage is occurring.

3.6.2 Lock Bar Guide Blocks, Lock Bars and Receivers

Description

Each lock bar on the west bascule is supported by two lock bar guide blocks. The guide blocks are bolted to the interior of the lower bascule truss chords. Each guide block has top and bottom bronze wear plates that serve as the sliding surfaces between the lock bars and the guide blocks. These guide block wear plates are adjustable via steel shim packs. When clearance due to wear becomes excessive, the guide block wear plate shims can be adjusted for a tighter fit between the wear plates and the lock bars.

When the lock bar actuator extends the lock bar from the west bascule, the lock bar engages a receiver assembly bolted to the interior of the lower bascule truss chord on the east bascule. The lock bar receivers also have top and bottom bronze wear plates that serve as the sliding surface between the lock bars and the receivers. When clearance due to wear becomes excessive, the receiver wear plate shims can be adjusted for a tighter fit between the wear plates and the lock bars.

Refer to photos numbered 4-15 and 4-16.

Number of Items and Location

There is one pair of lock bar guide blocks per center lock on the west bascule span (total of four). There is one lock bar receiver assembly per center lock on the east bascule span (total of two).
Maintenance Schedule and Procedures

WARNING
Use EXTREME CARE and ALWAYS REMOVE POWER from all pertinent electrical equipment before beginning maintenance. Refer to Section 3.2 LOCKOUT/TAGOUT AND OTHER SAFETY PROCEDURES.

Monthly
- Grease the lock bars, lock bar guide blocks and receiver socket sliding surfaces with Chevron Moly EP2 grease or approved equal. Wipe away debris, old grease and excess grease.
- Visually inspect condition of lock bars, lock bar guide blocks and receiver sockets for excessive wear and loose bolts. Tighten loose bolts as required.

Annually
- Using feeler gauge, take clearance measurements between the lock bars and the guide blocks/receiver wear plates. If the total clearance exceeds .025 inches, adjust the appropriate wear plate shims to restore the design clearance of between .006 and .013 inches.
- If the bronze wear plates are severely worm, replace them with the spare wear plates.

3.7 GATES
The gates block vehicular and pedestrian traffic from crossing the bridge during raising and lowering of the bascule span. The bridge west leaf and east leaf physically block the bridge to prevent vehicles from approaching the channel when the bascule span is in the open position.

3.7.1 Gates

Description
The gates provide notice to vehicular traffic that the bridge is operating and provide a convenient location for the traffic to remain stopped throughout the bridge operation. The gates have aluminum/fiberglass arms which are in the vertical position when the bridge is open to traffic. When the bridge roadway is to be closed to traffic each gate arm lowers into a horizontal position across the adjacent lanes of traffic.

Inside each gate housing there is a 1 HP motor and motor brake to control the oncoming gate arm’s movement. There is a shaft extension for a hand crank to operate the arm manually. Gate motion is started by a combination of interlocks and switch on the control console. While raising or lowering the gates, the motor is stopped by end of travel rotary limit switch contacts in the control wiring.

Each gate arm is supplied with red lights mounted on the oncoming gate arm that are controlled by a flasher located in the gate housing.

Refer to photos numbered 4-17 and 4-18.

Number of Items & Location
There are four gates. Two are located on the east approach and two are located on the west approach.
Maintenance Schedule and Procedures

Motors and brakes shall be maintained under Section 3.10. Limit switches shall be maintained under Section 3.12.4 and 3.12.5.

WARNING

Use EXTREME CARE and ALWAYS REMOVE POWER from all pertinent electrical equipment before beginning maintenance. Refer to Section 3.2 LOCKOUT/TAGOUT AND OTHER SAFETY PROCEDURES.

6 Months

- Check oil level in gear reducers. Maintain oil level with Mobil HSC-629 ISO VG 150 or equal, as necessary.
- Grease all shaft and crank arm bearings with Chevron Moly EP2 grease and wipe off excess grease.
- Check bolts holding the oncoming gate arm for any sign of looseness. Check the oncoming gate arms for any play or movement. Tighten the bolts as required to securely hold the oncoming gate arms.
- Inspect the oncoming gate housing for any external damage. Check the housing doors or hatches for proper closure. Inspect interior for any water accumulation, and determine the cause of the leakage, if any is found. Seal any holes in the housing and replace door gaskets as required.

5 Years

- Replace oil in the gear reducer with Mobil HSC-629 ISO VG 150 or equal.

3.8 ELECTRICAL POWER SYSTEMS

The electrical power systems consist of motor control centers (MCC), lighting panelboards, motor controllers and contactors, switches and disconnects, fuses, lighting contactors and relays, electrical cables, electronic motor drives, and transformers.

3.8.1 Lighting Panel (LP) and Motor Control Center (MCC)

Description

Lighting panels, also known as panelboards, are assemblies of bus bars and main/branch circuit breakers. The circuit breakers provide over-current protection as well as a means of turning on and off electrical distribution circuits.

Refer to photo numbered 4-19.

Motor Control Centers (MCC) are assemblies of enclosed cubicles that house motor controllers, over-current protection, and metering equipment. There is a single incoming main circuit breaker and a common system that feeds all of the cubicles.

Refer to photo numbered 4-20.
Number of Items and Location

There are two MCCs, one on the west side (WEST MCC) located in the Electrical Room West and one on the east side (EAST MCC) located in the Electrical Room East.

There are three lighting panelboards. Two are located on the west side, panel LP-W1 is located in the Electrical Room West and panel LP-W2 is located in the Control Tower. Panel LP-E1 is located in the Electrical Room East.

Maintenance Schedule and Procedures

Component parts of the lighting panels, and MCC shall be maintained under Sections 3.8.2 through 3.8.9.

Lighting panels and MCC shall be maintained as follows:

WARNING

Use EXTREME CARE and ALWAYS REMOVE POWER from all pertinent electrical equipment before beginning maintenance. Refer to Section 3.2 LOCKOUT/TAGOUT AND OTHER SAFETY PROCEDURES.

Annually

- Open and clean with a vacuum cleaner.
- Remove accumulation of dirt, grease, and gum with contact cleaner.
- Check for corrosion and moisture.
- Examine bus bar connections for poor or loose connections and evidence of overheating.
- Lubricate door hinges and latches.
- Operate each circuit breaker to check proper operation.
- Measure resistance to ground at each panelboard using a ground test kit. Verify resistance is 25 ohms or less.

3.8.2 Motor Controllers and Contactors

Description

Motor controllers (starters) and contactors are devices used to start and stop a motor at full voltage through a contact opening or closure. The motor controllers are combination circuit breaker and contactor assemblies with overload current relays. Motor controllers are located in the Motor Control Center and the drive cabinets. The motor controller doors are equipped with indicating lights and pushbuttons. See Section 3.8.9 Motor Drives for a description of the motor drive cabinets.

Number of Items and Location

<table>
<thead>
<tr>
<th>Description</th>
<th>Location</th>
<th>Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feeder Circuit Breaker</td>
<td>West MCC</td>
<td>Main Incoming Circuit Breaker 400AT</td>
</tr>
<tr>
<td>Description</td>
<td>Location</td>
<td>Equipment</td>
</tr>
<tr>
<td>--</td>
<td>----------</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td>Feeder Circuit Breaker</td>
<td>West MCC</td>
<td>Lighting Panel 75AT</td>
</tr>
<tr>
<td>Feeder Circuit Breaker</td>
<td>West MCC</td>
<td>East MCC 250AT</td>
</tr>
<tr>
<td>Feeder Circuit Breaker</td>
<td>East MCC</td>
<td>Main Incoming Circuit Breaker 225AT</td>
</tr>
<tr>
<td>Feeder Circuit Breaker</td>
<td>East MCC</td>
<td>Lighting Panel LP-E 50AT</td>
</tr>
<tr>
<td>Full Voltage Reversing (FVR) Comb. Starter</td>
<td>West MCC</td>
<td>Oncoming Gate (TG-W1) 1HP</td>
</tr>
<tr>
<td>Full Voltage Reversing (FVR) Comb. Starter</td>
<td>West MCC</td>
<td>Off Going Gate (TG-W2) 1HP</td>
</tr>
<tr>
<td>Full Voltage Reversing (FVR) Comb. Starter</td>
<td>East MCC</td>
<td>Oncoming Gate (TG-E1) 1HP</td>
</tr>
<tr>
<td>Full Voltage Reversing (FVR) Comb. Starter</td>
<td>East MCC</td>
<td>Oncoming Gate (TG-E2) 1HP</td>
</tr>
<tr>
<td>Full Voltage Reversing (FVR) Comb. Starter</td>
<td>West MCC</td>
<td>Center Lock (CL-1)</td>
</tr>
<tr>
<td>Full Voltage Reversing (FVR) Comb. Starter</td>
<td>West MCC</td>
<td>Center Lock (CL-2)</td>
</tr>
<tr>
<td>Full Voltage Non-Reversing (FVNR) Starter</td>
<td>West MCC</td>
<td>Sump Pump (SP-W) 5 HP</td>
</tr>
<tr>
<td>Full Voltage Non-Reversing (FVNR) Starter</td>
<td>East MCC</td>
<td>Sump Pump (SP-E) 5 HP</td>
</tr>
<tr>
<td>Full Voltage Non-Reversing (FVNR) Starter</td>
<td>West MCC</td>
<td>Machinery Brake (MAB-W1) ½ HP</td>
</tr>
<tr>
<td>Full Voltage Non-Reversing (FVNR) Starter</td>
<td>West MCC</td>
<td>Machinery Brake (MAB-W2) ½ HP</td>
</tr>
<tr>
<td>Full Voltage Non-Reversing (FVNR) Starter</td>
<td>West MCC</td>
<td>Motor Brake (MOB-W1) ½ HP</td>
</tr>
<tr>
<td>Full Voltage Non-Reversing (FVNR) Starter</td>
<td>West MCC</td>
<td>Motor Brake (MOB-W2) ½ HP</td>
</tr>
<tr>
<td>Full Voltage Non-Reversing (FVNR) Starter</td>
<td>West</td>
<td>Motor Blower (MBLR-W1) 1 HP</td>
</tr>
</tbody>
</table>
Description | Location | Equipment |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MCC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full Voltage Non-Reversing (FVNR) Starter</td>
<td>West MCC</td>
<td>Motor Blower (MBLR-W2) 1 HP</td>
</tr>
<tr>
<td>Full Voltage Non-Reversing (FVNR) Starter</td>
<td>East MCC</td>
<td>Motor Blower (MBLR-E1) 1 HP</td>
</tr>
<tr>
<td>Full Voltage Non-Reversing (FVNR) Starter</td>
<td>East MCC</td>
<td>Motor Blower (MBLR-E2) 1 HP</td>
</tr>
<tr>
<td>Full Voltage Non-Reversing (FVNR) Starter</td>
<td>East MCC</td>
<td>Machinery Brake (MAB-E1) ½ HP</td>
</tr>
<tr>
<td>Full Voltage Non-Reversing (FVNR) Starter</td>
<td>East MCC</td>
<td>Machinery Brake (MAB-E2) ½ HP</td>
</tr>
<tr>
<td>Full Voltage Non-Reversing (FVNR) Starter</td>
<td>East MCC</td>
<td>Motor Brake (MOB-E1) ½ HP</td>
</tr>
<tr>
<td>Full Voltage Non-Reversing (FVNR) Starter</td>
<td>East MCC</td>
<td>Motor Brake (MOB-E2) ½ HP</td>
</tr>
</tbody>
</table>

Maintenance Schedule and Procedures

Component parts of the motor controllers and contactors shall be maintained as specified under this Section through Section 3.8.6. Motor controllers and contactors shall be maintained as follows:

WARNING

Use EXTREME CARE and ALWAYS REMOVE POWER from all pertinent electrical equipment before beginning maintenance. Refer to Section 3.2 LOCKOUT/TAGOUT AND OTHER SAFETY PROCEDURES.

Annually

- Open enclosure and clean with a vacuum cleaner.
- Remove accumulation of dirt, grease, and gum with contact cleaner.
- Check for corrosion and moisture.
- Lubricate door hinges and latches.
- Check for worn or broken mechanical parts.
- Check Contacts:
 - Replace pitted or worn contacts. Install and adjust per manufacturer’s specifications, otherwise replace entire relay.
When replacing contacts or other current-carrying parts, clean surfaces that are to be bolted together.

- Discolored connections on terminals, contact supports, bus bars, or connectors usually indicate that overheating has occurred, probably because of loose connections. Clean connection points that are discolored. Tighten all hardware. Replace or repair heat-damaged wires and connectors as necessary.

- Insulating Parts:
 - Remove dust and dirt from insulating parts.
 - Insulators should be replaced if they are found to have carbonized tracks, or are either cracked or broken.
 - Before a repaired part is put into service, subject repaired part to a megger test.

- Electrical Operation:
 - Operate the motor controller/contactor without load and observe contact operation to be sure it opens and closes cleanly and that the contacts are fully sealed in the closed position.
 - Operate the motor controller/contactor under load and check for loud noise and arcing, both on opening and on closing. A loud noise and arcing on closing is usually due to contact bounce.

3.8.3 Safety Switches, Disconnects, and Enclosed Circuit Breakers

Description

Switches are devices for making, breaking, or changing connections in an electric circuit under the conditions of the load for which it is rated. There are various types of switches; some of the more common are main circuit breakers, safety switches and motor disconnect switches.

Refer to photo numbered 4-21.

Number of Items and Location

Numerous switches are located throughout the bridge and are individually mounted as main circuit breakers, disconnect switches, and motor disconnect switches.

Maintenance Schedule and Procedures

WARNING

Use EXTREME CARE and ALWAYS REMOVE POWER from all pertinent electrical equipment before beginning maintenance. Refer to Section 3.2 LOCKOUT/TAGOUT AND OTHER SAFETY PROCEDURES.

Annually

- When replacing contacts or other current-carrying parts, clean surfaces that are to be bolted together.

- Remove accumulation of dirt, grease, and gum with contact cleaner.

- Check for corrosion and moisture.
Examine for excessive heating of parts, discoloration of metal parts, charred insulation, odor, or blistering.

Check for freedom of moving parts.

Check for worn or broken mechanical parts.

Tighten loose mountings and connections.

Contacts:

Replace pitted or worn contacts if practical. Install and adjust per manufacturers’ specifications, otherwise replace entire item.

When replacing contacts or other current-carrying parts, clean surfaces that are to be bolted together.

- Check for excessive arcing.
- Check condition of gaskets (for dust-tight or watertight units).

3.8.4 Fuses

Description

A fuse is an overcurrent protective device. Fuses protect the electrical equipment only one time, and then must be replaced with a new fuse. Fuses are cylindrical in shape and are fastened in place at the ends by fuse clips or ferrules.

Refer to photo numbered 4-22.

Number of Items and Location

There are numerous fuses in control wiring for multiple pieces of equipment located in the motor control centers (MCCs), control desk, control panels, gate housings, and drive panels.

Maintenance Schedule and Procedures

WARNING

Use EXTREME CARE and ALWAYS REMOVE POWER from all pertinent electrical equipment before beginning maintenance. Refer to Section 3.2 LOCKOUT/TAGOUT AND OTHER SAFETY PROCEDURES.

As Needed

Replace all defective fuses.

Annually

When replacing contacts or other current-carrying parts, clean surfaces that are to be bolted together.

- Inspect fuses for evidence of overheating and corrosion.
- Inspect fuse clips for dirt and verify that the clips provide a tight fit.
Replace fuses as necessary with a fuse of the same model or an approved replacement model, and the same rating as the damaged fuse. Check the fuse ratings as referenced in the maintenance manual diagrams.

3.8.5 Lighting Contactors and Relays

Description

Lighting contactors and power relays are devices which are used to open or close the electrical power circuits to lighting loads such as the traffic signal lights and navigation lights.

Location

Lighting contactors and relays for the traffic signals and the navigation lights are located in the control desk and control panels.

Maintenance Schedule and Procedures

WARNING

Use EXTREME CARE and ALWAYS REMOVE POWER from all pertinent electrical equipment before beginning maintenance. Refer to Section 3.2 LOCKOUT/TAGOUT AND OTHER SAFETY PROCEDURES.

Annually

When replacing contacts or other current-carrying parts, clean surfaces that are to be bolted together.

- Remove accumulation of dirt, grease, and gum with contact cleaner.
- Check for corrosion and moisture.
- Check for worn or broken mechanical parts.
- Check Contacts:
 - Replace pitted or worn contacts if practical. Install and adjust per manufacturer’s specifications, otherwise replace entire relay.
 - Discolored connections on terminals, contact supports, bus bars, or connectors usually indicate that overheating has occurred, probably because of loose connections. Clean connection points that are discolored. Tighten all hardware. Replace or repair heat damaged wire and connectors.
- Insulating Parts:
 - Remove dust and dirt from insulating parts.
 - If carbonized tracks or cracked or broken insulators are found, replace the defective parts.
 - Before a repaired part is put into service, subject repaired part to an over-voltage test.
- Electrical Operation:
 - Operate the contactor without load and observe contact operation to be sure it opens and closes cleanly and that the contacts are fully sealed in the closed position. Contacts may
not be visible. A humming sound emanating from the coil may indicate loose laminations or mounting.

- Operate the contactor under load and check for abnormal noise and arcing, both on opening and on closing. A loud noise and arcing on closing is usually due to contact bounce.

3.8.6 Electrical Conductors

Description

Conductors may be stranded single-conductor or multiple-conductor cable.

Number of Items and Location

Numerous electrical conductors are located throughout the bridge.

Maintenance Schedule and Procedures

WARNING

Use EXTREME CARE and ALWAYS REMOVE POWER from all pertinent electrical equipment before beginning maintenance. Refer to Section 3.2 LOCKOUT/TAGOUT AND OTHER SAFETY PROCEDURES.

Annually

- Visually inspect terminations and splices for cracks, deterioration, corrosion, discoloring, or any other abnormalities.
- Check tightness of each conductor termination at each terminal box.
- Check the strain relief fitting for signs of distress.

3.8.7 Submarine Cable System

Description

Submarine cables are electrical conductors routed underneath the Hylebos Waterway from the west submarine terminal box to the east submarine terminal box. A direct bore was installed under the waterway with an HDPE pipe that connects the east shore to the west shore. The submarine cable is pulled through this pipe. The submarine cable system consists of conduit and wire (multi-conductor cables with communication cables) routed between terminal boxes.

Number of Items & Location

There are two terminal boxes, one located on the west approach adjacent to the bridge and one located on the east approach adjacent to the bridge. There are two submarine cables that contain power and control wiring.

Refer to photos numbered 4-25.
Maintenance Schedule and Procedures

WARNING

Use EXTREME CARE and ALWAYS REMOVE POWER from all pertinent electrical equipment before beginning maintenance. Refer to Section 3.2 LOCKOUT/TAGOUT AND OTHER SAFETY PROCEDURES.

Annually

- Visually inspect terminations and splices for cracks, deterioration, corrosion, discoloring, or any other abnormalities.
- Check tightness of each conductor termination at each terminal box.
- Check the strain relief fitting for signs of distress.
- Tighten loose connections.

3.8.8 Resistor Banks

Description

Resistor banks are housed in ventilated enclosures, made from ventilated panels. Inside the resistor banks are individual grid resistors made of a steel alloy. The individual resistors are arranged in a grid pattern with open ventilated construction between grids. Resistors are used to limit the current to a motor and allow better motor control.

Number of Items & Location

There are four resistor banks located in the Electrical Rooms. Two resistor banks are located in the Electrical Room West and two resistor banks are located in the Electrical Room East.

Refer to photo numbered 4-23.

Maintenance Schedule and Procedures

WARNING

Use EXTREME CARE and ALWAYS REMOVE POWER from all pertinent electrical equipment before beginning maintenance. Refer to Section 3.2 LOCKOUT/TAGOUT AND OTHER SAFETY PROCEDURES.

Annually

- Check for excessive heating of parts, discoloration of metal parts, charred insulation, odor, or blistering.
- Check for corrosion of metal parts.
- Tighten any loose connections.
3.8.9 Motor Drives

Description
The main bascule leaf drive motors are controlled by electronic motor “drives.” These controllers are solid state devices that control voltage to the motor, electronically, according to preset control parameters. Each drive is an alternating current (AC) silicon controlled rectifier (SCR) vector drive. Refer to vendor data for more details including troubleshooting. Each drive is rated to control both motors, and only one drive operates at a time during a bridge opening.

Refer to photo numbered 4-22.

Number of Items and Location
The motor drives for the bridge are located in cabinets in the motor control centers (MCCs) in both the Electrical Room West and Electrical Room East. Each drive is connected to a resistor bank (see Section 3.8.8).

Maintenance Schedule and Procedures

WARNING
Use EXTREME CARE and ALWAYS REMOVE POWER from all pertinent electrical equipment before beginning maintenance. Refer to Section 3.2 LOCKOUT/TAGOUT AND OTHER SAFETY PROCEDURES.

6 Months
❑ Check plug-in relays to make sure they are fully seated.

Annually
❑ Open enclosure and clean with a vacuum cleaner.
❑ Check for corrosion and moisture.
❑ Lubricate door hinges and latches.
❑ Check for worn or broken mechanical parts.
❑ Check contacts.
 • Replace pitted or worn contacts.
 • Install and adjust per manufacturer’s specifications, otherwise replace entire relay.
❑ Discolored connections on terminals, contact supports, bus bars, or connectors usually indicate that overheating has occurred, probably because of loose connections. Clean connection points that are discolored. Tighten all hardware. Replace or repair heat-damaged wires and connectors as necessary.
❑ Insulating Parts:
 • Remove dust and dirt from insulating parts.
 • Insulators should be replaced if they are found to have carbonized tracks.
❑ Electrical Operation:
• Measure current draw on load side of contactor. Elevated reading may indicate poor lubrication or binding in the drive machinery.

Electronic Sections:
• Avoid disturbing potentiometer settings.
• Inspect printed circuit boards for discoloration. Replace damaged boards as necessary.
• Inspect wire terminations to assure tightness.

Encoder
• Open enclosure and check for moisture and corrosion.
• Check electrical connections and mounting bolts for tightness; tighten as necessary.

3.8.10 Transformers

Description
Transformers are electrical devices that change the electrical power source by either changing the voltage or improving the power distribution.

Refer to photo numbered 4-24.

Number of Items & Location
There are transformers are follow:

<table>
<thead>
<tr>
<th>Description</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lighting Panel Transformer TF-W</td>
<td>Electric Room West</td>
</tr>
<tr>
<td>Lighting Panel Transformer TF-E</td>
<td>Electric Room East</td>
</tr>
</tbody>
</table>

Maintenance Schedule and Procedures

WARNING
Use EXTREME CARE and ALWAYS REMOVE POWER from all pertinent electrical equipment before beginning maintenance. Refer to Section 3.2 LOCKOUT/TAGOUT AND OTHER SAFETY PROCEDURES.

Annually
• Open and clean with vacuum cleaner.
• Check for corrosion and moisture.
• Check for unusual humming or other noises while operating. This may indicate loose bus bar connections.
• Check for evidence of overheating.
3.8.11 Incoming Service, Automatic Transfer Switch Panel, and Generator

Description
Utility incoming service is routed from a utility pole adjacent to the northwest approach. The utility metering equipment is mounted along the northwest side of the bridge. The incoming service is then routed by conduit to an automatic transfer switch panel. The service is then routed to the west motor control system.

The diesel generator wiring is also routed to the automatic transfer switch.

When Utility service is lost, the automatic transfer switch senses the loss of utility power it will start the generator. The generator provides emergency power to operate the bridge. When utility power returns the automatic transfer switch will sense the return of utility power and transfer the service back to the utility, turning off the generator automatically.

Location
The equipment is located in a fenced off area adjacent to the northwest approach to the bridge. There is one main service circuit breaker panel, automatic transfer switch, and one generator.

Refer to photo numbered 4-26, 4-27, and 4-28.

Maintenance Schedule and Procedures

WARNING
Use EXTREME CARE and ALWAYS REMOVE POWER from all pertinent electrical equipment before beginning maintenance. Refer to Section 3.2 LOCKOUT/TAGOUT AND OTHER SAFETY PROCEDURES.

Maintain the circuit breaker and the switches as described in section 3.8.3.

Semi-Annually
☐ Test the automatic transfer switch with the generator. Verify that the automatic transfer switch and generator operate properly.

Annually (Use Form 6-9)
☐ Remove accumulation of dirt, grease, and gum with contact cleaner from the automatic transfer switch.
☐ Check for corrosion and moisture on the automatic transfer switch.
☐ Check for worn or broken mechanical parts on the automatic transfer switch.
☐ Discolored connections on terminals, contact supports, bus bars, or connectors usually indicate that overheating has occurred, probably because of loose connections. Clean connection points that are discolored. Tighten all hardware. Replace or repair heat damaged wire and connectors from the automatic transfer switch and power receptacle.

3.9 LIGHTING SYSTEMS

The lighting systems consist of navigation lights, traffic signals, gates lights, interior and exterior lights.
3.9.1 Navigation Lights

Description
Pier lights are red fixtures. Their function is to enhance visibility of the piers and locate the channel for marine vessels.

Channel lights are red and green fixtures. When the bascule leaves are fully open, the channel lights located at the toes of the bascule leaves change from red to green.

There is a sign light mounted over the sign that notifies river traffic that one hour notice is required to open the bridge. There is a floodlight used to illuminate the sign.

Refer to photo numbered 4-16.

Number of Items and Location

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Type</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Red Pier Lights</td>
<td>East Pier</td>
</tr>
<tr>
<td>2</td>
<td>Red Pier Lights</td>
<td>West Pier</td>
</tr>
<tr>
<td>2</td>
<td>Red/Green Channel Lights</td>
<td>Toe of the West Bascule Leaf</td>
</tr>
<tr>
<td>2</td>
<td>Red/Green Channel Lights</td>
<td>Toe of the East Bascule Leaf</td>
</tr>
<tr>
<td>1</td>
<td>Flood Light</td>
<td>Sign illumination in channel</td>
</tr>
</tbody>
</table>

Maintenance Schedule and Procedures

WARNING
Use EXTREME CARE and ALWAYS REMOVE POWER from all pertinent electrical equipment before beginning maintenance. Refer to Section 3.2 LOCKOUT/TAGOUT AND OTHER SAFETY PROCEDURES.

Weekly
- Check pier and channel lights to confirm proper operation.
- Replace lamps or fixtures, as needed.

Annually
- Clean globes, interior surface, and weep holes.
- Check gaskets.
- Tighten loose connections.
- Inspect for corrosion of metal parts.
- Replace worn or broken mechanical parts.
Replace lamps.

3.9.2 Traffic Signals

Description

Traffic signals caution roadway traffic before and during periods of span operation.

Approaching the bridge, on both sides of the roadway on the approaches are traffic signal lights.

Locations and Number of Items

The bridge traffic signals and warning signals are located as follows:

<table>
<thead>
<tr>
<th>Location</th>
<th>Color</th>
<th>Fixtures</th>
<th>Lamps per Fixture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oncoming Lane, West Approach</td>
<td>Red-Yellow-Green</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Off Going Lane, West Approach</td>
<td>Red-Yellow-Green</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Oncoming Lane, West Approach</td>
<td>Red-Yellow-Green</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Off Going Lane, East Approach</td>
<td>Red-Yellow-Green</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Refer to photo numbered 4-17.

Maintenance Schedule and Procedures

WARNING

Use EXTREME CARE and ALWAYS REMOVE POWER from all pertinent electrical equipment before beginning maintenance. Refer to Section 3.2 LOCKOUT/TAGOUT AND OTHER SAFETY PROCEDURES.

Weekly

- Check lights for proper operation. Replace lamps as needed.

Annually

- Replace all lamps. Verify lamp filament is properly aligned with respect to the lens to maximize lens refraction.
- Clean all reflectors and lenses, and spot paint heads.

3.9.3 Gate Lights

Description

Gate lights caution roadway traffic before and during periods of span operation.

Refer to photo numbered 4-17.
Locations and Number of Items

There are red flashing lights on the gate arms mounted to each gate.

Maintenance Schedule and Procedures

WARNING

Use EXTREME CARE and ALWAYS REMOVE POWER from all pertinent electrical equipment before beginning maintenance. Refer to Section 3.2 LOCKOUT/TAGOUT AND OTHER SAFETY PROCEDURES.

Weekly

- Check flashing lights and verify that they work properly. Replace light bulbs as required. Check that the lights are firmly attached to the arm and tighten as required.

6 Months

- Check flashing lights and verify that they work properly. Replace light bulbs as required. Check that the lights are firmly attached to the arm and tighten as required.
- Check wiring for evidence of excessive overheating. Determine cause and repair as necessary.

3.9.4 Interior and Exterior Lights

Description

Incandescent, emergency battery, and florescent fixtures are mounted throughout the bridge. A lighting panel is located in the Control Tower, Electrical Room West, and Electric Room East to feed the lights.

Number of Items and Location

There are numerous lights located throughout the bridge in the enclosed rooms, platforms, ladders, and catwalks.

Maintenance Schedule and Procedures

WARNING

Use EXTREME CARE and ALWAYS REMOVE POWER from all pertinent electrical equipment before beginning maintenance. Refer to Section 3.2 LOCKOUT/TAGOUT AND OTHER SAFETY PROCEDURES.

Weekly

- Check for burned-out lamps. Replace lamps as needed.
- Test emergency lights for proper operation, repair/replace as needed.

Annually

- Clean luminaire lenses, interior surfaces, and weep holes (where applicable).
- Check gaskets and replace as needed.
- Tighten loose connections.
- Inspect for corrosion of metal parts. Spot paint as necessary.
- Replace worn or broken parts.

3.10 ELECTRIC MOTORS, THRUSTOR BRAKE MOTORS, AND SOLENOID BRAKES

3.10.1.1 Electric Motors

Description

Electric motors transform electric power to mechanical power.

Refer to photos numbered 4-6, 4-9, 4-14, and 4-18.

Number of Items and Location

Motors on the bridges are located as follows:

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Location</th>
<th>Equipment Name</th>
<th>Horsepower</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Oncoming West Approach Lane</td>
<td>Southeast Oncoming Gate Motor (TG-W1)</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>Off Going West Approach Lane</td>
<td>Southwest Off Going Gate Motor (TG-W2)</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>Oncoming East Approach Lane</td>
<td>Southeast Oncoming Gate Motor (TG-E1)</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>Off Going East Approach Lane</td>
<td>Southwest Off Going Gate Motor (TG-E2)</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>Machinery Room West</td>
<td>Sump Pump (SP-W)</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>Machinery Room West</td>
<td>Motor Blower W1 (MBLR-W1)</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>Machinery Room West</td>
<td>Motor Blower W2 (MBLR-W2)</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>West Bascule Leaf</td>
<td>Center Lock (CL-1)</td>
<td>2.1</td>
</tr>
<tr>
<td>1</td>
<td>West Bascule Leaf</td>
<td>Center Lock (CL-2)</td>
<td>2.1</td>
</tr>
<tr>
<td>1</td>
<td>Machinery Room East</td>
<td>Sump Pump (SP-E)</td>
<td>5</td>
</tr>
</tbody>
</table>
SECTION 3 MAINTENANCE

HYLEBOS BRIDGE O&M MANUAL
CITY OF TACOMA

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Location</th>
<th>Equipment Name</th>
<th>Horsepower</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Machinery Room East</td>
<td>Motor Blower E1 (MBLR-E1)</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>Machinery Room East</td>
<td>Motor Blower E2 (MBLR-E2)</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>Machinery Room West</td>
<td>Drive Motor (M-W1)</td>
<td>75</td>
</tr>
<tr>
<td>1</td>
<td>Machinery Room West</td>
<td>Drive Motor (M-W2)</td>
<td>75</td>
</tr>
<tr>
<td>1</td>
<td>Machinery Room East</td>
<td>Drive Motor (M-E1)</td>
<td>75</td>
</tr>
<tr>
<td>1</td>
<td>Machinery Room East</td>
<td>Drive Motor (M-E2)</td>
<td>75</td>
</tr>
</tbody>
</table>

Maintenance Schedule and Procedures

WARNING

Use EXTREME CARE and ALWAYS REMOVE POWER from all pertinent electrical equipment before beginning maintenance. Refer to Section 3.2 LOCKOUT/TAGOUT AND OTHER SAFETY PROCEDURES.

Annually

- Verify that shaft is free of oil and grease from bearings.
- Check for leakage around bearings. Clean off excess grease and dirt.
- Verify that shaft end-play is normal.
- Inspect and tighten electrical connections on motor.
- See that all keys, bolts, and pins are in their proper position. Check all bolts for tightness. If loose, tighten.
- Check operation of space heaters where applicable. This can be accomplished by touching the motor to see if it is warm before operation.
- During operation, examine motor for smooth running and absence of vibration.
- During operation, check motor and bearing for overheating.
- Lubricate motor bearings equipped with grease fittings or oil spout filler, using Chevron GST-68 oil or Molub Alloy 777 NGLI No. 2 grease. Where grease tubes have threaded plugs, remove plugs on both sides. Install grease fitting on one side and lubricate bearings with grease gun. Grease must be allowed to vent through the open plug or the seal will be damaged and grease will enter the motor windings. Remove the grease fitting and install the plugs.
- Check painted surfaces for signs of corrosion. Spot paint as necessary. Do not paint nameplates.
- Perform Dielectric Tests: Perform megohm meter tests to check insulation resistance values on all three-phase motors. Make megohm measurements from each phase to ground, and measurements should be identical for all phases. (Perform a phase to phase reading, which should be zero, to verify
the motor leads are properly selected.) Readings should be taken using a 500 volt DC hand cranked or battery operated Megger. Readings can be made from the opened insight disconnecting equipment. The readings will include the short run of feeder wire. Overhaul shall be scheduled for motors when megohm measurements from phase to ground are projected to reach 2.0 megohms or less. If the megohm value reaches 1.0 megohm, overhaul is mandatory. When low readings are taken, open the motor terminations and take readings directly at the motor to confirm the results.

☐ Check the phase currents flowing in motors under loaded conditions with a clamp-on ammeter for motors 1 horsepower or larger. Utilize a true RMS ammeter. Compare the measured current with the nameplate data.

Eight Years
☐ Repaint motors. Do not paint nameplates.

3.10.2 Thrustor Brake Motors

Description
Thrustor brakes are used on the span drive machinery to provide braking and holding torque on the bascule leaf machinery. The electrical components on the thrustor brakes include the thrustor pump motors and three lever operated limits switches that sense brake "released” and “manually released”.

Refer to photos numbered 4-6, 4-7, 4-8, 4-9, and 4-11.

Number of Items and Location

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Location</th>
<th>Equipment Name</th>
<th>Horsepower</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Machinery Room West</td>
<td>Machinery Brake (MAB-W1)</td>
<td>½</td>
</tr>
<tr>
<td>1</td>
<td>Machinery Room West</td>
<td>Machinery Brake (MAB-W2)</td>
<td>½</td>
</tr>
<tr>
<td>1</td>
<td>Machinery Room West</td>
<td>Motor Brake (MOB-W1)</td>
<td>½</td>
</tr>
<tr>
<td>1</td>
<td>Machinery Room West</td>
<td>Motor Brake (MOB-W2)</td>
<td>½</td>
</tr>
<tr>
<td>1</td>
<td>Machinery Room East</td>
<td>Machinery Brake (MAB-E1)</td>
<td>½</td>
</tr>
<tr>
<td>1</td>
<td>Machinery Room East</td>
<td>Machinery Brake (MAB-E2)</td>
<td>½</td>
</tr>
<tr>
<td>1</td>
<td>Machinery Room East</td>
<td>Motor Brake (MOB-E1)</td>
<td>½</td>
</tr>
<tr>
<td>1</td>
<td>Machinery Room East</td>
<td>Motor Brake (MOB-E2)</td>
<td>½</td>
</tr>
</tbody>
</table>
Maintenance Schedule and Procedures

WARNING

Use EXTREME CARE and ALWAYS REMOVE POWER from all pertinent electrical equipment before beginning maintenance. Refer to Section 3.2 LOCKOUT/TAGOUT AND OTHER SAFETY PROCEDURES.

Annually

- Perform a general visual inspection while stationary and during bascule leaf operation.
- Electrical Components: Check electrical connections and tighten as necessary.
- Check for excessive heating of parts evidenced by discoloration of metal parts, charred insulation, or odor. Check for collections of dirt or gum, evidence of water dripping, or corrosion. Clean as necessary.
- Check for excessive vibration or noise during operation.
- Check limit switch operation. Check lever arm to shaft connection for tightness and corrosion. Tighten and clean as needed. Check lever arm rollers for free rotation, roundness and cracks or breakage.
- Perform Dielectric Tests: Perform megohm meter tests to check insulation resistance values on all three-phase motors. Take megohm measurements from each phase to ground; measurements should be identical for all phases. Readings should be taken using a 500 volt DC hand cranked or battery operated Megger. Overhaul shall be scheduled for motors when megohm measurements from phase to ground are projected to reach 2.0 megohms or less. If the megohm value reaches 1.0 megohm, overhaul is mandatory.

3.10.3 Solenoid Brakes

Description

Solenoid brakes serve to provide braking and holding torque on various motors and associated machinery where the machinery is required to be held in a fixed position.

Refer to photos numbered 4-14 and 4-18.
Number of Items and Location

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Location</th>
<th>Equipment Name</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Oncoming West Approach Lane</td>
<td>Southeast Oncoming Gate Motor (TG-W1)</td>
<td>Disc</td>
</tr>
<tr>
<td>1</td>
<td>Off Going West Approach Lane</td>
<td>Southwest Off Going Gate Motor (TG-W2)</td>
<td>Disc</td>
</tr>
<tr>
<td>1</td>
<td>Oncoming East Approach Lane</td>
<td>Southeast Oncoming Gate Motor (TG-E1)</td>
<td>Disc</td>
</tr>
<tr>
<td>1</td>
<td>Off Going East Approach Lane</td>
<td>Southwest Off Going Gate Motor (TG-E2)</td>
<td>Disc</td>
</tr>
<tr>
<td>1</td>
<td>West Bascule Leaf</td>
<td>Center Lock (CL-1)</td>
<td>Disc</td>
</tr>
<tr>
<td>1</td>
<td>West Bascule Leaf</td>
<td>Center Lock (CL-2)</td>
<td>Disc</td>
</tr>
</tbody>
</table>

Maintenance Schedule and Procedures

WARNING
Use EXTREME CARE and ALWAYS REMOVE POWER from all pertinent electrical equipment before beginning maintenance. Refer to Section 3.2 LOCKOUT/TAGOUT AND OTHER SAFETY PROCEDURES.

Annually

- Perform a general visual inspection while stationary and during bascule leaf operation.
- Electrical Components: check electrical connections and tighten as necessary.
- Mechanical Components: inspect for wear, broken parts, and bolt and nut tightness. Check for freedom of moving parts (no binding or sticking).
- Check for excessive heating of parts evidenced by discoloration of metal parts, charred insulation, or odor. Check for collections of dirt or gum, evidence of water dripping, or corrosion. Clean as necessary.
- Check for excessive vibration or noise during operation.
3.11 MISCELLANEOUS ELECTRICAL SYSTEMS

3.11.1 Traffic Gongs

Description
The traffic gongs provide an audible warning of an upcoming bascule leaf operation. The gongs are automatically turned on when the gates are lowered. They automatically turn off when all gates are fully raised.

Number of Items and Location

There are two traffic gongs, one on each of the oncoming gates.

Maintenance Schedule and Procedures

WARNING
Use EXTREME CARE and ALWAYS REMOVE POWER from all pertinent electrical equipment before beginning maintenance. Refer to Section 3.2 LOCKOUT/TAGOUT AND OTHER SAFETY PROCEDURES.

Weekly
- Check gongs for proper operation.

6 Months
- Check for proper operation of the system. Correct as necessary.
- Tighten assembly bolts.
- Lubricate hammer mechanism with light machine oil.

3.11.2 PA Speaker Intercom

Description
There is a Public Announcement (PA) Intercom system on the bridge. The system allows the operator to use the PA Intercom to address waterway traffic and roadway traffic.

Number of Items and Location

There is one operator handset located adjacent to the control desk in the Control Tower. There is one speaker on the west approach off going traffic lane traffic signal and the east approach oncoming traffic signal. There is one speaker on the west side of the channel to address the waterway traffic.
Maintenance Schedule and Procedures

WARNING
Use EXTREME CARE and ALWAYS REMOVE POWER from all pertinent electrical equipment before beginning maintenance. Refer to Section 3.2 LOCKOUT/TAGOUT AND OTHER SAFETY PROCEDURES.

6 Months

- Check for proper operation of the system. Correct as necessary.
- Check for corrosion and moisture.
- Check for excess heating of parts, discoloration of metal parts, charred insulation, odor, or blistering.
- Tighten loose connections.

3.11.3 Fire Alarm System

Description
There is a fire alarm system provided on the bridge. The system consists of smoke detectors, manual pull stations, and strobe/horn alarm units.

Refer to photo numbered 4-19.

Number of Items and Location

There is a fire alarm panel, a manual pull station, and a strobe/horn alarm unit, in the lower level of the Control Tower. There is a manual pull station, smoke detector, and a strobe/horn alarm unit in the upper level of the Control Tower.

There is a manual pull station, two smoke detectors, and a strobe/horn alarm unit in each Electrical Room and each Machinery Room.

Maintenance Schedule and Procedures

WARNING
Use EXTREME CARE and ALWAYS REMOVE POWER from all pertinent electrical equipment before beginning maintenance. Refer to Section 3.2 LOCKOUT/TAGOUT AND OTHER SAFETY PROCEDURES.

6 Months

- Check for proper operation of the system. Correct as necessary.
- Check for corrosion and moisture.
- Check for excess heating of parts, discoloration of metal parts, charred insulation, odor, or blistering.
3.11.4 Intrusion Alarm System

Description
There is an intrusion alarm system provided on the bridge. This consists of door sensors, a keypad controller, and alarm panel.

Number of Items and Location
There is one Alarm Panel and key pad located in the lower level of the Control Tower. There is one door sensor on the door to Control Tower and each door to the Electrical and Machinery Rooms.

Maintenance Schedule and Procedures

WARNING
Use EXTREME CARE and ALWAYS REMOVE POWER from all pertinent electrical equipment before beginning maintenance. Refer to Section 3.2 LOCKOUT/TAGOUT AND OTHER SAFETY PROCEDURES.

6 Months
- Check for proper operation of the system. Correct as necessary.
- Check for corrosion and moisture.
- Check for excess heating of parts, discoloration of metal parts, charred insulation, odor, or blistering.
- Tighten loose connections.

3.11.5 Heating

Description
A heating unit is provided to heat the Control Tower, Electrical Rooms, and Machinery Rooms.

Number of Items and Location
There is one heating unit located in each Machinery Room and each Electrical Room. There is a heater in the lower level and a heat pump in the upper level of the Control Tower.
Maintenance Schedule and Procedures

WARNING
Use EXTREME CARE and ALWAYS REMOVE POWER from all pertinent electrical equipment before beginning maintenance. Refer to Section 3.2 LOCKOUT/TAGOUT AND OTHER SAFETY PROCEDURES.

Annually
- Check for proper operation.
- Check for excessive heating of parts evidenced by discoloration of metal parts, charred insulation, or odor. Check for collections of dirt or gum, evidence of water dripping, or corrosion. Clean as necessary.
- Check for excessive vibration or noise during operation.

3.12 CONTROL SYSTEMS

The control systems consist of the control desk, meters and instruments, limit switches, and position indication system.

3.12.1 Control Desk

Description

The control desk is a metal floor-mounted cabinet that contains such items as pilot lights, pushbuttons, switches, and position indicators. The devices are actuated by the operator as defined in Section 2 to open and close the bascule leaf while the pilot lights provide status indication for equipment position and operational status. The control desk contain a programmable logic control (PLC) input/output (I/O) drop in the desk to control the bridge operation.

There is an uninterruptible power supply in the control desk to provide emergency power.

Refer to photo numbered 4-29.

Number of Items and Location

There is one control desk located in the upper level of the Control Tower.
Maintenance Schedule and Procedures

WARNING

Use EXTREME CARE and ALWAYS REMOVE POWER from all pertinent electrical equipment before beginning maintenance. Refer to Section 3.2 LOCKOUT/TAGOUT AND OTHER SAFETY PROCEDURES.

Switches, relays, meters, etc. should be maintained as discussed under the appropriate section covering that equipment.

All instruments should be visually inspected and the necessary performance characteristics noted.

Annually

- Open enclosure and clean with a vacuum cleaner. Remove accumulation of dirt, grease, and gum with contact cleaner.
- Check for corrosion and moisture.
- Check for excess heating of parts, discoloration of metal parts, charred insulation, odor, or blistering.
- Tighten loose connections.
- Check for worn or broken mechanical parts.
- Lubricate door hinges and latches.
- Check strip heaters for operation.
- Check UPS for alarms and replace batteries as necessary.
- Check PLC I/O drop for alarms or indications. Replace PLC I/O cards as required.

Six Years

- Measure resistance to ground for the control desk using a ground test kit. Verify resistance is 25 ohms or less.

3.12.2 Control Panels

Description

The control panels control all of the sequence interlocks and control indications for the bridge. Each panel contains terminal blocks, circuit breakers and both plug-in and machine tool relays. Each panel has a uninterruptible power supply (UPS) to provide emergency power. The control panels contain a programmable logic controller (PLC) and PLC input/output (I/O) drops in the panel to control the bridge operation.

Refer to photo numbered 4-30.

Number of Items and Location

There is a main control panel CP-2 located in the Electrical Room West. There is a control panel CP-3 located in the Electrical Room East.
Maintenance Schedule and Procedures

WARNING

Use EXTREME CARE and ALWAYS REMOVE POWER from all pertinent electrical equipment before beginning maintenance. Refer to Section 3.2 LOCKOUT/TAGOUT AND OTHER SAFETY PROCEDURES.

Annually

When replacing contacts or other current-carrying parts, clean surfaces that are to be bolted together.

- Remove accumulation of dirt, grease, and gum with contact cleaner.
- Check for corrosion and moisture.
- Check for worn or broken mechanical parts.
- Check UPS for alarms and replace batteries as necessary.
- Check PLC racks for alarms and indicator lights. Replace PLC cards as required.
- Check Contacts:
 - Replace entire relay if in poor condition.
 - When replacing contacts or other current carrying parts, clean surfaces that are to be bolted together.
- Discolored connections on terminals, contact supports, bus bars, or connectors usually indicate that overheating has occurred, probably because of loose connections. Clean connection points that are discolored. Tighten all hardware. Replace or repair heat damaged wire and connectors.
- Insulating Parts:
 - Remove dust and dirt from insulating parts.
 - If carbonized tracks or cracked or broken insulators are found, replace the defective parts.
 - Before a repaired part is put into service, subject repaired part to an over-voltage test.

3.12.3 Meters and Instruments

Description

Various ammeters, kilowatt meters, indicating lights, and instrumentation are used to monitor electrical apparatus. Most of these instruments receive power by shunts from the main line they are metering.

Number of Items and Location

Numerous instruments and meters are located in the control desk and motor control centers.
Maintenance Schedule and Procedures

WARNING

Use EXTREME CARE and ALWAYS REMOVE POWER from all pertinent electrical equipment before beginning maintenance. Refer to Section 3.2 LOCKOUT/TAGOUT AND OTHER SAFETY PROCEDURES.

Annually

- Tighten loose connections.
- Check for corrosion and moisture
- Inspect for cracks and broken cases or cover glass. Replace as necessary.
- Remove accumulation of dirt, grease, and gum with contact cleaner.

3.12.4 Rotary Limit Switches

Description

A limit switch is a switch/device that provides feedback in an electrical circuit. When actuated this device will restrict or initiate an operation.

Each bascule leaf and gate is equipped with rotary limit switches that control drive system and provide position status indication. Rotary limit switch components include adjustable cam operators and sealed contact lever operated snap switches.

The bascule leaf rotary limit switch is driven by an open gear section. The bascule leaf rotary limit switch is used for control and interlocking of the leaves and associated devices. Cover plates protect the rotary cam limit switch drive mechanisms from debris.

Refer to photo numbered 4-3.

Number of Items and Location

The bascule leaf is equipped with a rotary limit switch located on the trunnion adjacent to the Machinery Room.

There are four gate rotary limit switches. A rotary limit switch is attached to the extended shaft of the reducer by a sprocket and chain inside each of their respective housings.
Maintenance Schedule and Procedures

WARNING
Use EXTREME CARE and ALWAYS REMOVE POWER from all pertinent electrical equipment before beginning maintenance. Refer to Section 3.2 LOCKOUT/TAGOUT AND OTHER SAFETY PROCEDURES.

6 Months

- Remove accumulation of dirt, grease, and gum.
- Check for excessive heating of parts, discoloration of metal parts, charred insulation, odor, or blistering.
- Check for freedom of moving parts (no binding or sticking).
- Check for corrosion and moisture.
- Tighten loose mountings and connections.
- Check for worn or broken mechanical parts.
- Check condition of gaskets, if present.

3.12.5 Lever Operated Limit Switches

A limit switch is a switch/device that provides feedback in an electrical circuit. When actuated this device will restrict or initiate an operation.

Refer to photos numbered 4-3, 4-7, 4-8, 4-15, 4-18 and 4-31.

Number of Items and Locations

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Limit Switch Function</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Brake Released</td>
<td>Motor Brake (MOB-W1)</td>
</tr>
<tr>
<td>1</td>
<td>Brake Manually Released</td>
<td>Motor Brake (MOB-W1)</td>
</tr>
<tr>
<td>1</td>
<td>Brake Set</td>
<td>Motor Brake (MOB-W1)</td>
</tr>
<tr>
<td>1</td>
<td>Brake Released</td>
<td>Motor Brake (MOB-W2)</td>
</tr>
<tr>
<td>1</td>
<td>Brake Manually Released</td>
<td>Motor Brake (MOB-W2)</td>
</tr>
<tr>
<td>1</td>
<td>Brake Set</td>
<td>Motor Brake (MOB-W2)</td>
</tr>
<tr>
<td>1</td>
<td>Brake Released</td>
<td>Machinery Brake (MAB-W1)</td>
</tr>
<tr>
<td>1</td>
<td>Brake Manually Released</td>
<td>Machinery Brake (MAB-W1)</td>
</tr>
<tr>
<td>1</td>
<td>Brake Set</td>
<td>Machinery Brake (MAB-W1)</td>
</tr>
<tr>
<td>Quantity</td>
<td>Limit Switch Function</td>
<td>Location</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>1</td>
<td>Brake Released</td>
<td>Machinery Brake (MAB-W2)</td>
</tr>
<tr>
<td>1</td>
<td>Brake Manually Released</td>
<td>Machinery Brake (MAB-W2)</td>
</tr>
<tr>
<td>1</td>
<td>Brake Set</td>
<td>Machinery Brake (MAB-W2)</td>
</tr>
<tr>
<td>1</td>
<td>Brake Released</td>
<td>Motor Brake (MOB-E1)</td>
</tr>
<tr>
<td>1</td>
<td>Brake Manually Released</td>
<td>Motor Brake (MOB-E1)</td>
</tr>
<tr>
<td>1</td>
<td>Brake Set</td>
<td>Motor Brake (MOB-E1)</td>
</tr>
<tr>
<td>1</td>
<td>Brake Released</td>
<td>Motor Brake (MOB-E2)</td>
</tr>
<tr>
<td>1</td>
<td>Brake Manually Released</td>
<td>Motor Brake (MOB-E2)</td>
</tr>
<tr>
<td>1</td>
<td>Brake Set</td>
<td>Motor Brake (MOB-E2)</td>
</tr>
<tr>
<td>1</td>
<td>Brake Released</td>
<td>Machinery Brake (MAB-E1)</td>
</tr>
<tr>
<td>1</td>
<td>Brake Manually Released</td>
<td>Machinery Brake (MAB-E1)</td>
</tr>
<tr>
<td>1</td>
<td>Brake Set</td>
<td>Machinery Brake (MAB-E1)</td>
</tr>
<tr>
<td>1</td>
<td>Brake Released</td>
<td>Machinery Brake (MAB-E2)</td>
</tr>
<tr>
<td>1</td>
<td>Brake Manually Released</td>
<td>Machinery Brake (MAB-E2)</td>
</tr>
<tr>
<td>1</td>
<td>Brake Set</td>
<td>Machinery Brake (MAB-E2)</td>
</tr>
<tr>
<td>1</td>
<td>Nearly Closed Limit Switch (ZS-114)</td>
<td>West Bascule Leaf Trunnion</td>
</tr>
<tr>
<td>1</td>
<td>Nearly Open Limit Switch (ZS-115)</td>
<td>West Bascule Leaf Trunnion</td>
</tr>
<tr>
<td>1</td>
<td>Sump Pump (SP-W) Level Switch</td>
<td>West Bascule Leaf Counterweight Pit</td>
</tr>
<tr>
<td>1</td>
<td>Sump Pump (SP-E) Level Switch</td>
<td>East Bascule Leaf Counterweight Pit</td>
</tr>
<tr>
<td>1</td>
<td>Center Lock Lock Bar Unlock (ZS-008)</td>
<td>Center Lock (CL-1)</td>
</tr>
<tr>
<td>1</td>
<td>Center Lock Lock Bar Lock (ZS-007)</td>
<td>Center Lock (CL-1)</td>
</tr>
<tr>
<td>1</td>
<td>Center Lock Actuator (ZS-005)</td>
<td>Center Lock (CL-1)</td>
</tr>
<tr>
<td>1</td>
<td>Center Lock Hand Crank Switch</td>
<td>Center Lock (CL-1)</td>
</tr>
<tr>
<td>1</td>
<td>Center Lock Lock Bar Unlock (ZS-010)</td>
<td>Center Lock (CL-2)</td>
</tr>
<tr>
<td>1</td>
<td>Center Lock Lock Bar Lock (ZS-009)</td>
<td>Center Lock (CL-2)</td>
</tr>
</tbody>
</table>
Quantity Limit Switch Function Location

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Limit Switch Function</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Center Lock Actuator (ZS-006) Center Lock (CL-2)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Center Lock Hand Crank Switch</td>
<td>Center Lock (CL-2)</td>
</tr>
<tr>
<td>1</td>
<td>Full Closed Limit Switch (ZS-112) West Counterweight Pit</td>
<td>West Counterweight Pit</td>
</tr>
<tr>
<td>1</td>
<td>Full Closed Limit Switch (ZS-212) East Counterweight Pit</td>
<td>East Counterweight Pit</td>
</tr>
<tr>
<td>1</td>
<td>Redundant Nearly Closed Limit Switch (ZS-214)</td>
<td>East Bascule Leaf Trunnion</td>
</tr>
<tr>
<td>1</td>
<td>Redundant Nearly Open Limit Switch (ZS-215)</td>
<td>East Bascule Leaf Trunnion</td>
</tr>
<tr>
<td>1</td>
<td>Buffer Extended Limit Switch (ZS-120) West Pier</td>
<td>West Pier</td>
</tr>
<tr>
<td>1</td>
<td>Buffer Extended Limit Switch (ZS-121) West Pier</td>
<td>West Pier</td>
</tr>
<tr>
<td>1</td>
<td>Buffer Extended Limit Switch (ZS-220) East Pier</td>
<td>East Pier</td>
</tr>
<tr>
<td>1</td>
<td>Buffer Extended Limit Switch (ZS-221) East Pier</td>
<td>East Pier</td>
</tr>
<tr>
<td>2</td>
<td>Traffic Gate Enclosure Door Safety Switch Traffic Gate (TG-W1)</td>
<td>Traffic Gate (TG-W1)</td>
</tr>
<tr>
<td>2</td>
<td>Traffic Gate Enclosure Door Safety Switch Traffic Gate (TG-W2)</td>
<td>Traffic Gate (TG-W2)</td>
</tr>
<tr>
<td>2</td>
<td>Traffic Gate Enclosure Door Safety Switch Traffic Gate (TG-E1)</td>
<td>Traffic Gate (TG-E1)</td>
</tr>
<tr>
<td>2</td>
<td>Traffic Gate Enclosure Door Safety Switch Traffic Gate (TG-E2)</td>
<td>Traffic Gate (TG-E2)</td>
</tr>
</tbody>
</table>

Maintenance Schedule and Procedures

WARNING

Use EXTREME CARE and ALWAYS REMOVE POWER from all pertinent electrical equipment before beginning maintenance. Refer to Section 3.2 LOCKOUT/TAGOUT AND OTHER SAFETY PROCEDURES.

6 Months

- Check mounting bolts and tighten as needed.
- Remove accumulation of dirt, grease, and gum.
- Check for excessive heating of parts, discoloration of metal parts, charred insulation, odor, or blistering.
- Check for freedom of moving parts (no binding or sticking).
- Check for corrosion and moisture.
- Tighten loose mountings and connections.
Check for worn or broken mechanical parts.

☐ Check condition of gaskets, if present.

☐ Check lever arm for tightness, deformation, and damage to wheel.

☐ Check for proper actuation of the limit switch arm.

3.12.6 Position Transmitters

Description

Each bascule leaf position transmitter encoder is installed in the same enclosure as the bascule leaf rotary limit switch. Cover plates protect the rotary cam limit switch and position transmitter drive mechanisms from debris.

The position transmitter is an analog device that provides a current signal that is proportioned to the rotation of the input shaft. The position indicator shows the position of the bascule leaf.

Number of Items and Location

The bascule leaf is equipped with a position transmitter in the same enclosure as the rotary limit switch, located on the trunnion adjacent to the Machinery Room.

Refer to photo numbered 4-3.

Maintenance Schedule and Procedures

WARNING

Use EXTREME CARE and ALWAYS REMOVE POWER from all pertinent electrical equipment before beginning maintenance. Refer to Section 3.2 LOCKOUT/TAGOUT AND OTHER SAFETY PROCEDURES.

Annually

☐ Check electrical termination and tighten as necessary.

☐ Inspect interior of enclosure for moisture and corrosion.

☐ Inspect coupling and shaft for wear.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRUNNION BEARING ASSEMBLY</td>
<td>4-3</td>
</tr>
<tr>
<td>LIVE LOAD BEARING ASSEMBLY</td>
<td>4-4</td>
</tr>
<tr>
<td>AIR BUFFER ASSEMBLY</td>
<td>4-5</td>
</tr>
<tr>
<td>SPAN DRIVE MACHINERY</td>
<td>4-6</td>
</tr>
<tr>
<td>MOTOR BRAKE</td>
<td>4-7</td>
</tr>
<tr>
<td>MACHINERY BRAKE</td>
<td>4-8</td>
</tr>
<tr>
<td>MOTOR COUPLING</td>
<td>4-9</td>
</tr>
<tr>
<td>FLOATING SHAFT AND FLOATING SHAFT COUPLING</td>
<td>4-10</td>
</tr>
<tr>
<td>PRIMARY SPEED REDUCER</td>
<td>4-11</td>
</tr>
<tr>
<td>SECONDARY DIFFERENTIAL SPEED REDUCER</td>
<td>4-12</td>
</tr>
<tr>
<td>MAIN PINION AND RACK</td>
<td>4-13</td>
</tr>
<tr>
<td>CENTER LOCK MACHINERY</td>
<td>4-14</td>
</tr>
<tr>
<td>CENTER LOCK BAR AND LOCK BAR GUIDE</td>
<td>4-15</td>
</tr>
<tr>
<td>CENTER LOCK RECEIVER ASSEMBLY</td>
<td>4-16</td>
</tr>
<tr>
<td>NORTHWEST GATE AND TRAFFIC SIGNAL</td>
<td>4-17</td>
</tr>
<tr>
<td>NORTHWEST GATE INTERIOR</td>
<td>4-18</td>
</tr>
<tr>
<td>LIGHTING PANEL (LP-W2) – CONTROL TOWER</td>
<td>4-19</td>
</tr>
<tr>
<td>WEST MOTOR CONTROL CENTER</td>
<td>4-20</td>
</tr>
<tr>
<td>DISCONNECT SWITCHES</td>
<td>4-21</td>
</tr>
<tr>
<td>MOTOR DRIVE</td>
<td>4-22</td>
</tr>
<tr>
<td>RESISTOR BANKS</td>
<td>4-23</td>
</tr>
<tr>
<td>LIGHTING PANEL TRANSFORMER</td>
<td>4-24</td>
</tr>
<tr>
<td>SUBMARINE CABLE TERMINAL CABINET</td>
<td>4-25</td>
</tr>
</tbody>
</table>
SECTION 4 PHOTOS

INCOMING SERVICE, INCOMING SERVICE CIRCUIT BREAKER DISCONNECT, AND AUTOMATIC TRANSFER SWITCH ... 4-26

INCOMING SERVICE, INCOMING SERVICE CIRCUIT BREAKER DISCONNECT, AND AUTOMATIC TRANSFER SWITCH WITH PANEL OPEN ... 4-27

DIESEL GENERATOR .. 4-28

CONTROL DESK ... 4-29

CONTROL PANEL CP-2 .. 4-30

FULLY SEATED LIMIT SWITCH .. 4-31
TRUNNION BEARING ASSEMBLY
LIVE LOAD BEARING ASSEMBLY
AIR BUFFER ASSEMBLY

Shown in Extended Position
SPAN DRIVE MACHINERY
MOTOR BRAKE
MACHINERY BRAKE
MOTOR COUPLING
FLOATING SHAFT AND FLOATING SHAFT COUPLING
PRIMARY SPEED REDUCER
SECONDARY DIFFERENTIAL SPEED REDUCER
MAIN PINION AND RACK
CENTER LOCK MACHINERY
CENTER LOCK BAR AND LOCK BAR GUIDE
CENTER LOCK RECEIVER ASSEMBLY
NORTHWEST GATE AND TRAFFIC SIGNAL
NORTHWEST GATE INTERIOR
LIGHTING PANEL (LP-W2) – CONTROL TOWER
WEST MOTOR CONTROL CENTER
DISCONNECT SWITCHES

Disconnect Switch Machinery Brake W1
Disconnect Switch Drive Motor W1
Disconnect Switch Motor Blower W1
Disconnect Switch Motor Brake W1
MOTOR DRIVE
RESISTOR BANKS
LIGHTING PANEL TRANSFORMER
SUBMARINE CABLE TERMINAL CABINET
INCOMING SERVICE, INCOMING SERVICE CIRCUIT BREAKER DISCONNECT, AND AUTOMATIC TRANSFER SWITCH
INCOMING SERVICE, INCOMING SERVICE CIRCUIT BREAKER DISCONNECT, AND AUTOMATIC TRANSFER SWITCH WITH PANEL OPEN
DIESEL GENERATOR
CONTROL DESK

Allen Bradley Panelview HMI Display Screen

Foot Switch
CONTROL PANEL CP-2
FULLY SEATED LIMIT SWITCH
Hylebos Bridge

City of Tacoma

Tacoma, WA.

Operations, Maintenance and Lubrication Manual

Volume 6
Vertical Warning Gates

Engineer: Parsons Brinckerhoff
Contractor: Quigg Bros., Inc.
Date of Issue: November 1, 2011
Moveable Bridge Specialist Conformance Acknowledgement

I certify that I have reviewed the attached submittal, and have coordinated with the other specialists, the mechanical, electrical and structural divisions of the moveable portions of the Bridge. This review and coordination is for general compliance with the contract documents in regards to my respective engineering discipline.

Craig Rasberry, EIR – Electrical Specialist

Dan Smith, QBI – Mechanical Specialist

Charles Mayhan, Sargent Engineers – Structural Specialist
VW-4
VERTICAL WARNING GATE

HANDBOOK

Hylebos Bridge Rehab
B&B Roadway Job # WA161
Table of Contents

Roadway Job #: WA161
Location: Hylebos Bridge Rehab

Section 1: Installation Instructions
Section 2: Manual Operation Instructions
Section 3: Maintenance Guidelines
Section 4: Basic Assembly Drawings
 BV4-A001 Standard Operator Assembly
 AAW-A001 Shear Pin Base Assembly
 ALS-A001 10-Circuit Limit Switch Assembly
Section 5: Accessories Specifications
 L4 Arm Lights
 Flasher
 LS Limit Switch
 Gong
Section 6: Drawings and Specifications Pertaining to This Installation
 VW-4 Specifications for Job # WA161
 BV4-E434 Sh1-4 Wiring Diagram
 BV4-I156 Installation Drawing

Section 7: Warranty

PLEASE NOTE: Save time and prevent potential damage to your gate. Read all pertinent instructions before beginning a task. If you do not understand an instruction, require spare parts, or need technical assistance on a detail not covered by the handbook, please contact us.

B&B Roadway LLC
15191 Hwy 243
Russellville, AL 35654

(888) 560-2060 toll free
(256) 332-4036 fax
Section 1

Installation Instructions
VW-4 Vertical Warning Gate Handbook

Installation Instructions

Before You Begin: You will save time and prevent potential damage to the barrier gate by reading all instructions before beginning installation. Follow instructions carefully and in order. If you do not understand an instruction, you can obtain assistance by calling the factory toll free at (888) 560-2060.

Preparation:

1. Prepare the barrier foundation according to the plans prepared by the project engineer. If installing as a replacement using the existing foundation, double check the anchor bolt size and pattern to be sure they will work with the new equipment. (See installation drawing following for dimensions.)

2. Arrange to have necessary equipment available during installation. A forklift, hoist or other lifting equipment will be required. You will also need standard tools (wrenches, screw drivers, etc.) and some apparatus to prop or hold the arm up at the correct height (closed to traffic position) until the counterweights are installed (such as a pair of sawhorses and shimming blocks). A reversible, electric (if power will be available) or battery-powered drill is very useful for manually operating the barrier and is recommended.

Installation:

Caution: Do NOT install the arm or counterweights until Step 9!

1. Carefully set the operator housing over the anchor bolts. Add flat washers and tighten the nuts. Seal between the base and the foundation with silicon caulking.

 NOTE: Be sure the operator is turned with the roadway side toward the roadway. The main arm shaft (extending out of the housing near the top) will be offset toward the roadway. Refer to the installation drawing included in this handbook.

2. Test the barrier's basic operation. Manually operate the barrier with the hand crank or drill adapter included (mounted inside the housing). Refer to MANUAL OPERATION PROCEDURE in this handbook if you are not certain of the procedure.

 Important: The limit switch has been pre-set during testing at the factory and the barrier is shipped with the mechanism in the OPEN-TO TRAFFIC (i.e. RAISED) position. Be sure to crank in the proper direction ("lower / close" direction first) to avoid getting the mechanism out of synchronization with the limit switch settings. If you do inadvertently crank the mechanism the wrong way, simply reverse the cranking direction (manually) until you get back to the correct synchronization.

 Hint: If your barrier does not have a gong or other equipment mounted directly to the top cover, manual operation will be more convenient with the top cover of the housing removed.

3. Wire the barrier according to the wiring diagram. A copy of the wiring diagram for this barrier is included in this installation handbook. The wiring diagram is also mounted inside.
the access door of the barrier. **This must be done by a qualified electrician! Do not run the barrier yet!**

4. **Initially test** the barrier as follows.

 A) **First**, manually crank the barrier to an intermediate position between full open and full close.

 B) **Reconnect power.** Be ready to break the circuit (issue a "stop" signal or disconnect power) in case the barrier functions differently than expected.

 C) **Give the barrier a signal to “open”** (i.e. raise the arm).

 NOTE: If your barrier has a crank safety switch, the circuit is disabled whenever the hand crank or drill crank adapter is in place on the shaft extending through the motor brake. Or, if your barrier has door safety switches, opening either access door disables the control circuit, preventing automatic operation. The door safety switches have a “pull-to-override” feature for testing purposes. Pull the plunger on the switch to enable the circuit.

 HINT: If the barrier operates opposite of that expected (i.e. it “closes/lowers” when it is supposed to “open/raise” or the reverse) check the following:

 a - If your barrier uses three phase power, reverse any two of the three incoming power leads to the motor.

 b - Manually operate the barrier to see if the barrier was cranked backwards in step 2 above - if it was, it will also appear to have incorrect limit switch settings (i.e. not stopping at the correct positions automatically, refusing to operate, etc.). Correct this by manually operating the barrier until the transmission crank is again positioned within the correct range of rotation. See drawing following, illustrating the correct rotation range.
NOTE: Each barrier is fully tested through a minimum of 20 complete cycles at the factory before shipping. The limit switch cams were preset during factory testing and should not require significant adjustment, if any adjustment at all! Please contact the factory before adjusting limit switchcams at (888) 560-2060.

5. Continue testing by issuing a “close/lower” signal and continuing through all other operation sequences, including emergency reverse (i.e. issue an “open/raise” signal while the barrier is closing).

6. Operate the barrier to the fully “closed” (down) position, allowing it to stop automatically.

7. DISCONNECT POWER.

8. Remove the bolt connecting the main arm crank to the upper rod end. See below.

9. Install the barrier arm. IMPORTANT: Keep the arm propped up until the counterweights are installed. Slide the arm over the base and fasten with the bolts provided. Refer back to the arm assembly drawing in this handbook. If your arm uses truss cables, attach the cables using the turnbuckles and tighten to remove slack. Do not leave slack, allowing the arm to droop, and do not tighten excessively, flexing the arm upward. Do NOT unfasten the bumper rod yet.

10. Install the counterweights. Balance the counterweights between each side arm channel. Refer to the drawing or photo following to determine the correct arrangement for your barrier.

 NOTE: During installation, if the arm begins to rise, pull the arm back down manually and slide the counterweights forward until balanced.

11. Check and adjust the balance of the arm and counterweights. Carefully remove the props. Adjust by sliding the counterweights in the slot until the arm is balanced. Tighten the bolts securely to hold the counterweights in place.
12. **Replace and tighten the bolt to connect the crank and rod end.**

13. The total swing angle of the arm is 90 degrees. This total swing angle can not be adjusted unless your barrier was ordered with a special adjustable length crank. However, the positions of the extreme ends of travel can be adjusted (cocked a few degrees from vertical and horizontal). This may be desirable if you wish to have the closed/down position of the arm parallel to a sloping roadway, for example. First, operate the barrier to the position you wish to align (i.e. raised or lowered). Loosen the nuts at each end of the connecting rod where it screws into the rod ends. Twist the connecting rod, observing the change in arm position. The new raised and lowered positions of the arm will be approximately 90 degrees apart.

14. Check to be sure that power is still disconnected. **Then connect wiring for the arm lights.**

15. Install or wire any additional optional equipment.

16. **Retest the operator under power** with all equipment installed.

17. With the barrier in the lowered position, **unfasten bumper rod (if your barrier has one).** Shorten or lengthen as required by loosening the jam nuts and turning the threaded portion. Retighten the jam nuts after adjustment. The arm should rest on the bumper rod, but not prevent the arm from traveling to the fully closed position, thereby jarring the arm and possibly even causing damage to the bumper rod.

CAUTION: For the shear pin to be able to act as intended, it must not be torqued up tight. The elastic stop nut should hold the shear pin in place but the shear pin should be able to be rotated by hand or with a small wrench. Any clamping force, exerted by a torqued up shear pin on the shear pin base / cross member assembly, will reduce – and potentially remove – the ability of the shear pin to shear under an impact. Any impact forces would then be transmitted directly to the operator housing.

B&B Roadway LLC
15191 Hwy 243
Russellville, AL 35654

(888) 560-2060 toll free
(256) 332-4036 fax
Section 2

Manual Operation Instructions
VW-4 Vertical Warning Gate Handbook

Manual Operation Procedures

NOTE: Follow instructions carefully and in order. If you do not understand an instruction, you can obtain assistance by calling the factory toll free at (888) 560-2060.

SUGGESTION: It is recommended that a fully charged, battery powered drill be kept in the control house for the purpose of more quickly and easily manually operating the gates. Also, if the gates have lockable doors, a key will be required to gain access to the mechanism for manual operation.

Manual or Emergency Operation:

1. As a precaution, **DISCONNECT POWER** (flip power switch off) to prevent any possible unexpected automatic operation during manual operation.

2. **Release the motor brake.** The brake is on top of the electric motor. It is released by rotating the knob on top of the cover about 90 degrees.
3. Locate the drill crank adapter or hand crank. These accessories are mounted on the wall inside each gate housing.

4. Place the drill crank adapter or hand crank over the shaft extending through the brake on top of the electric motor.

5. Check the label on the brake cover to determine the correct cranking rotation to operate the gate in the desired direction.

 IMPORTANT: Be sure to crank in the proper direction. Cranking in the wrong direction will appear to operate the gate correctly, but the transmission crank will be in the wrong rotation range, causing the mechanism to be out of synchronization with the limit switch. (See sketch below.) If you do inadvertently crank the mechanism the wrong way, simply reverse the cranking direction until the transmission crank is again operating in the correct rotation range and the mechanism is again synchronized with the limit switch. **DO NOT ATTEMPT TO CORRECT BY ADJUSTING LIMIT SWITCHES!**

6. Crank the gate to the desired position.

 HINT: If you anticipate a need to manually operate the gate several times and your gate does not have a gong or other equipment mounted directly to the top cover, manual operation will be more convenient with the top cover of the housing removed.
7. Reset the brake.
8. Remove the hand crank or drill crank adapter.
9. Reconnect power (flip power switch on).
10. Close (and lock) the gate. Never leave the gate unsecured and/or the mechanism exposed to the weather.

CAUTION: For the shear pin to be able to act as intended, it must not be torqued up tight. The elastic stop nut should hold the shear pin in place but the shear pin should be able to be rotated by hand or with a small wrench. Any clamping force, exerted by a torqued up shear pin on the shear pin base / cross member assembly, will reduce – and potentially remove – the ability of the shear pin to shear under an impact. Any impact forces would then be transmitted directly to the operator housing.

B&B Roadway LLC
15191 Hwy 243
Russellville, AL 35654

(888) 560-2060 toll free
(256) 332-4036 fax
Section 3

Maintenance Guidelines
MAINTENANCE GUIDELINES

If you have questions regarding maintenance procedures or recommendations, you can obtain assistance by calling the factory toll free at (888) 560-2060.

CAUTION: ALWAYS DISCONNECT POWER BEFORE SERVICING EQUIPMENT!

NOTE: Automatic operation is disabled any time the drill crank adapter or the hand crank is in place on the shaft through the brake, if your barrier has a crank safety switch. You must remove the hand crank or drill crank adapter to allow normal automatic operation. Also, if your barrier was ordered with optional door safety switches, when either access door is opened for service, the gate is disabled from automatic operation. The door safety switch is a white, plunger-type switch mounted at the top of each door. These switches have a pull-to-override feature if you find it necessary to operate the gate under power during service. The door switches will reset automatically when the doors are closed.

NOTE: For typical applications, perform the following maintenance procedures after the first month of service and at 6-month intervals thereafter.

Transmission:

GENERAL: The double reduction worm gear transmission used on the VW-4 has two compartments. The objective of the maintenance procedure and schedule is to monitor and maintain the oil level in each compartment to ensure smooth operation and long life.

IMPORTANT: Use only a synthetic oil with an EP additive designed for worm gears (such as Mobil Glygoyle HE 460). The transmission shipped is filled with Mobil Glygoyle HE 460 in both cases. If you intend to change to a different oil, you should drain all old oil first and flush with a light flushing oil to avoid mixing the oils unless the lubricant manufacturer has specifically given other instructions.

1. Open the access door on the roadway side and DISCONNECT POWER using the disconnect switch.

2. Check the oil level in each case section through the oil level plugs (see drawing following to locate level and fill plugs).

3. If the oil has become discolored, milky, or dirty, change the oil. Drain the old oil, flush with a light flushing oil and refill to the oil level. Cycle the operator a few times and recheck the level before leaving. Do not overfill. Be sure to use the correct oil in each case (see above).

4. If the oil level is low, remove the fill plugs and add oil to bring it to the proper level at the level plugs. (Note: Very little, if any, oil will normally be required to top off the level. If
the oil level is very low, check for leaks.) Do NOT overfill (higher than level plugs) - this can cause overheating. *Be sure to use the correct oil in each case (see above).*

5. **Reconnect power.**

Arm Shaft Bearings and Rod Ends:

GENERAL: The main purpose of this procedure is to keep the operating mechanism well lubricated to ensure smooth operation. Ball bearings and rod ends have zerk type grease fittings for relubrication. Use a grease lubricant such as Texaco Marfak 2.

1. **Open the access door on the roadway side and DISCONNECT POWER** using the disconnect switch.

2. **Grease the shaft bearings.** The main arm shaft is mounted in a pair of ball bearings and, if your unit has a sidewalk arm, the sidewalk arm shaft is also mounted in a pair of bearings. The bearings are inside the housing, mounted on the side walls near the top of the operator.

 NOTE: If your unit has an auxiliary crank, the 3-bolt-mounted bronze spherical bearing used for the auxiliary crank is permanently lubricated and does not require routine lubrication.

3. **Grease the rod ends.** The rod ends used on each end of the connecting rod must also be greased. The connecting rod is the vertical round rod inside the housing, which connects the main arm crank (upper) and transmission crank (lower).

4. **Reconnect power.**

Limit Switch:

GENERAL: The objective of this maintenance procedure is to prevent corrosion and seizing of the limit switch chain and to prevent excessive slack in the chain (possibly resulting in the limit switch becoming out of sync with the mechanism, causing poor operation).

1. **Open the access door on the roadway side and DISCONNECT POWER** using the disconnect switch.

2. **Lubricate the roller chain** between the limit switch and the transmission output shaft. IMPORTANT: Use a lubricant intended for roller chain.

 NOTE: Chain lubricant is available in spray cans and is convenient for this procedure.
3. **Check the roller chain tension.** Roller chain stretches over time. There should be no slack in the chain. **If the chain is loose, tighten it** by moving the limit switch as follows. The limit switch is mounted to the cross channel with 4 bolts. The mounting holes are slotted. Loosen the nuts on these bolts slightly and pull the limit switch toward you to tighten the chain. Retighten the nuts. Be sure to tighten the nuts enough to prevent slipping.

4. **If you can not pull the limit switch toward you far enough to tighten the chain, you have probably reached the end of the slot.** In this case, you will need to shorten the chain. First, locate the master link in the chain. Using a chain breaking tool, remove one or two regular links next to the master link. Reconnect the chain with the master link. Then tighten the chain as described above. Cycle the gate manually to check the limit switch settings (be sure the barrier arm stop and start positions are accurate, etc.).

NOTES: Manually operate the gate using the drill crank adapter (recommended if you have a drill) or the hand crank. **If you are not fully familiar with the procedure for manual operation, refer to MANUAL OPERATION PROCEDURE in this handbook.** Be sure to remove the drill crank adapter or hand crank when you are done or the gate will not operate automatically.

5. **Reconnect power.**

CAUTION: For the shear pin to be able to act as intended, it must not be torqued up tight. The elastic stop nut should hold the shear pin in place but the shear pin should be able to be rotated by hand or with a small wrench. Any clamping force, exerted by a torqued up shear pin on the shear pin base / cross member assembly, will reduce – and potentially remove – the ability of the shear pin to shear under an impact. Any impact forces would then be transmitted directly to the operator housing.

B&B Roadway LLC
15191 Highway 243
Russellville, AL 35654

(888) 560-2060 toll free
(256) 332-4036 fax
Section 4

Basic Assembly Drawings
PARTS LIST

<table>
<thead>
<tr>
<th>PIECE</th>
<th>QTY</th>
<th>PART NUMBER</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>BAV-P018</td>
<td>23.75" CROSS MEMBER</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>AAV-P001</td>
<td>ARM BASE</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>AAV-P02</td>
<td>SHEAR PIN BUSHING</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>AAV-P04</td>
<td>PIVOT SLEEVE</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>BR-52-T2800</td>
<td>BEARING, BRONZE THRUST</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>BLT885-7068A</td>
<td>BOLT, 3/4" B.S. HEX. & 6 1/2" LONG</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>NUTBS 75-10658A</td>
<td>NUT, 3/4" B.S. HEX. B.S.H.</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>BLTAL-5-1300.5 (NOTE 1)</td>
<td>SHEAR PIN 1/2" x 13 x 2 x 1/2" 2024-T3 AL. BLT.</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>NUTBS 5-1308A</td>
<td>NUT 1/2" B.S. B.S.H.</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>AAV-P003</td>
<td>LATCH PIN</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>BLT885-71383</td>
<td>EYE BOLT</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>PIP-L0040-55S</td>
<td>SPRING, B.S. 1.75" LONG</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>PIP581-02CL</td>
<td>PIPE NIPPLE, B.S. 1" NPT X CLOSE</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>AAV-P005</td>
<td>CAP, B.S.</td>
</tr>
<tr>
<td>15</td>
<td>8</td>
<td>-</td>
<td>BOLT, NUT & WASHER, 1/2"-13 x 1.25" HEX</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>-</td>
<td>ARM (AS SPECIFIED)</td>
</tr>
<tr>
<td>17</td>
<td>2</td>
<td>-</td>
<td>BOLT, NUT & WASHER, 1/2"-13 x 4.75" HEX</td>
</tr>
</tbody>
</table>

NOTES:

1. USE GROOVED BOLT, AAV-P037, FOR ARM LENGTHS <=20'

COPYRIGHT © B & B ROADWAY LLC ALL RIGHTS RESERVED.

These drawings, including specifications, are furnished for the purpose of enabling the Requestor to make a decision concerning the purchase of the Requestor's business need. Any use or reproduction,转让 or modification of this information in any manner other than specifically authorized in writing by B&B ROADWAY LLC is strictly prohibited.

DRAWING TITLE:

SHEAR PIN BASE & ARM ASSEMBLY

DRAWING NUMBER:

AW-0001
PARTS LIST

<table>
<thead>
<tr>
<th>PIECE</th>
<th>GTY</th>
<th>PART NUMBER</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>1</td>
<td>ES-P015</td>
<td>22.5" CROSS MEMBER</td>
</tr>
<tr>
<td>2.</td>
<td>1</td>
<td>AAW-P001</td>
<td>ARM BASE</td>
</tr>
<tr>
<td>3.</td>
<td>1</td>
<td>AAW-P002</td>
<td>SHEAR PIN BUSHING</td>
</tr>
<tr>
<td>4.</td>
<td>1</td>
<td>AAW-P004</td>
<td>PIVOT SLEEVE</td>
</tr>
<tr>
<td>5.</td>
<td>1</td>
<td>BR-62-T2800</td>
<td>BEARING, BRONZE THRUST</td>
</tr>
<tr>
<td>6.</td>
<td>1</td>
<td>BL-T80-75-10X5</td>
<td>BOLT, 3/4" B.S. HEX 6 1/2" LONG</td>
</tr>
<tr>
<td>7.</td>
<td>1</td>
<td>NUT-B8-75-T2800</td>
<td>BOLT, 3/4" B.S. HEX EINAK</td>
</tr>
<tr>
<td>8.</td>
<td>1</td>
<td>BLTAL-5-10X2.5</td>
<td>SHEAR PIN (1/2"-13 x 2 1/2") 204HT AL BLT</td>
</tr>
<tr>
<td>9.</td>
<td>1</td>
<td>PIH025-12E25NA</td>
<td>NUT, 1/2" B.S. ESNA</td>
</tr>
<tr>
<td>10.</td>
<td>1</td>
<td>AAW-P003</td>
<td>LATCH PIN</td>
</tr>
<tr>
<td>11.</td>
<td>1</td>
<td>BL-T80-37X2.5</td>
<td>EYE BOLT</td>
</tr>
<tr>
<td>12.</td>
<td>1</td>
<td>PIP-3125L-5688</td>
<td>SPRING, S.S. 1.76" LONG</td>
</tr>
<tr>
<td>13.</td>
<td>1</td>
<td>PIN030-1X1.0C2L</td>
<td>PIPE NIPPLE, S.S. 1" NPT X CLOSE</td>
</tr>
<tr>
<td>14.</td>
<td>1</td>
<td>AAW-P005</td>
<td>CAP, 3/8"</td>
</tr>
<tr>
<td>15.</td>
<td>8</td>
<td>-</td>
<td>BOLT, NUT & LUG WASHER, 1/2"-13 x 1 1/2", HEX</td>
</tr>
<tr>
<td>16.</td>
<td>1</td>
<td>-</td>
<td>ARM (AS SPECIFIED)</td>
</tr>
<tr>
<td>17.</td>
<td>2</td>
<td>-</td>
<td>BOLT, NUT & LUG WASHER, 1/2"-13 x 4 7/8", HEX</td>
</tr>
</tbody>
</table>

NOTES:

1. USE GROOVED BOLT, AAW-P037, FOR ARM LENGTHS <=20'
NOTE:
1. CAN BE MADE OPPOSITE HAND.
Section 5

Accessories Specifications
L-4 WARNING LIGHT
Specifications for B&B Roadway Job #WA161
Hylebos Bridge Rehab - WADOT

Typical Use Notes: Both lights shown here are typically used on warning gate arms or vertical barrier arms, spaced 4" to 7" apart. The 4" light is used more commonly because of the reduced wind profile. Often, the end light is wired to burn continuously and the remaining lights flash alternately (see separate specs for arm light flasher). Lights are normally controlled by the limit switch (see separate specification) to be off when the gate is open to traffic and on at all other times.

L7 (left) and L4 (right) Arm Warning Lights

L-4 ARM WARNING LIGHT

GENERAL: The warning light shall be B&B Roadway, LLC, Model L4, (888) 560-2060.

APPLICATIONS: The warning light shall be used as a traffic signaling light to mark and draw attention to the warning gate or traffic barrier.

HOUSING and GENERAL CONSTRUCTION: The housing shall be of high impact plastic. Assembly shall be double-faced. Light assembly shall be mounted to warning gate arm or barrier using an aluminum adapter plate.

LENSES: Lenses shall be red fresnel plastic, approximately 4" diameter.

LAMP and RECEPTACLE: Lamp shall be a 12V, 100,000 hour LED, with a double contact bayonet base.

Revised 8/09
12V ARM LIGHT FLASHER
Specifications for B&B Roadway Job #WA161
Hylebos Bridge Rehab - WADOT

12V FLASHER

GENERAL: The flasher shall be moisture and corrosion resistant and shall be capable of dissipating heat sufficient for continuous duty.

FLASH RATE: The flasher shall have two alternately flashing circuits, and one steady burn circuit. Each flashing circuit shall flash .50 seconds on and .50 seconds off.

INPUT VOLTAGE: Standard input voltage shall be 120VAC. The transformer shall provide 12V for the flasher and the arm lights. The flasher shall operate properly for input voltages within 10% of nominal.

OUTPUT VOLTAGE AND AMPERAGE: The output circuits shall be rated at 10 amps at 12V each (10 amps total load). A voltage drop of up to .5 volts to the output terminals shall be acceptable.

OVERLOAD PROTECTION: Built-in, internal overload protection with auto-reset (no fuse required).

TERMINALS: Terminals shall be clearly labeled and shall be compression type screw terminals.
LS-10 LIMIT SWITCH
Specifications for B&B Roadway Job #161
Hylebos Bridge Rehab - WADOT

Limit Switch with and without cover (8 circuit switch shown – 10 circuit adds 2 cam and switch sets)

Limit Switch detail (8 circuit switch shown)

GENERAL: The limit switch shall be Model LS-10, manufactured by B&B Roadway, LLC, (888) 560-2060.

APPLICATIONS: The limit switch shall commonly be used to control and synchronize electrical functions of warning gates or barriers and/or to provide position indication to remote devices.

HOUSING and GENERAL CONSTRUCTION: Housing shall be of anodized aluminum. All other fabricated components shall be of corrosion resisting materials and/or finishes. Input to the switch shall be via a roller chain sprocket. Housing mounting shall allow switch position to be adjusted to fully tension chain. A removable cover shall prevent accidental contact with terminals.

OPERATION: Ten (10) individual switches shall provide SPDT function (NO, NC, and Common contacts) on each. Contacts shall be rated for 15A, 480VAC. Each switch shall be controlled by an independent cam. Loosening of a single nut shall allow simple adjustment of one, two or more cams without disturbing remaining cam settings. Design shall allow easy adjustment with cam set rotated to any position.

Revised 8/09
G-12 WARNING GONG
Specifications for B&B Roadway Job #WA161
Hylebos Bridge Rehab - WADOT

G-12 Warning Gong, shown with housing mounting adapter

GENERAL: The warning gong shall be Model G-12, by B&B Roadway, LLC, (888) 560-2060, or an approved equal meeting all specifications defined herein.

APPLICATIONS: The warning gong shall be used as an audible traffic signaling device to draw attention to the warning gate or traffic barrier and, thereby, to the bridge status.

HOUSING and GENERAL CONSTRUCTION: The housing shall be of heavy duty, cast aluminum construction. Gong assembly shall be equipped with an aluminum mounting adapter for mounting to the top of warning gate housing. Mounting shall be designed to enclose all wiring. A hinged and gasketed rear door shall provide service access. A cast aluminum guard above the shell shall provide weather protection.

SOUND LEVEL: Gong shall produce a sound level of 90db at 10 feet.

OPERATING VOLTAGE: Gong shall operate on 120V power. Current draw is .45 FLA.

GONG SHELL: Gong shell shall be silicon bronze.

Revised 8/09
Section 6

Specifications and Drawings Pertaining to This Installation
VW-4 VERTICAL WARNING GATE
Specifications for B&B Roadway Job #WA161
Hylebos Bridge Rehab - WADOT

GENERAL: The warning gate shall be Model VW-4, as manufactured by B&B Roadway, LLC, (888) 560-2060.

APPLICATIONS: The gate shall be designed for use as a warning, traffic control and access control gate. The gate shall be explicitly designed for traffic control on movable bridges as described in AASHTO's current Standard Specifications for Movable Highway Bridges, HOV and reversible lanes and similar applications.

HOUSING: The operating mechanism and main control components shall be contained in a weatherproof housing. The housing shall be constructed of ¼" (4.8mm) aluminum. Exterior surfaces shall be painted aluminum. All fasteners shall be corrosion resistant. Arm shaft openings shall incorporate O-ring seals.

Front and rear access doors shall be mounted on full cross bronze straps. Hinges shall be of the slip-off type and shall have stainless steel pins. Door latches, two per door, shall use a vise action to compress a neoprene bulb-type gasket to seal the door openings. A padlockable strap shall be provided suitable for heavy duty standard padlocks or shackless padlocks. Locks provided by others.

MOUNTING: The gate shall be fixed to a suitable foundation, as specified by the project engineer, using four 3/4" (20mm) diameter minimum anchor bolts. The gate housing base shall provide four 1.00" (25mm) holes on a 20 1/4" (514mm) square pattern. (Mounting holes in standard base shall be slotted to allow for a 19 1/2" x 20 1/4" (495mm x 514mm) mounting pattern to accommodate some existing bolt patterns.)

ARM: The gate arm shall be 4" (102mm) square, 6005-T5 aluminum extruded tubing with 3" square end section of high-strength UV-resistant fiberglass. Maximum arm length shall be 40" (12m) from the centerline of the housing. Stainless steel truss cables and a damping type bumper rod shall be furnished with longer arms at the discretion of the manufacturer. Front and rear arm surfaces shall be covered with alternating red and white pre-striped diamond grade reflective sheeting. Stripes shall be 16" (406mm) wide, and shall slope at 45 degrees down toward the arm tip. Remaining exposed surfaces shall be painted white.

ARM BASE: The arm base shall be designed with a shear pin mechanism to minimize damage to the gate and vehicle in the event of a collision. In the event of an impact, the shear pin shall break, allowing the arm to swing approximately 75 to 80 degrees. At the full open position, a spring-loaded latch shall engage, preventing the arm from swinging back into traffic. Arm shall be easily reset by manually releasing the latch, rotating the arm back into position and replacing the shear pin.

ARM MOUNTING CHANNELS: A pair of carbon steel channels, hot dip galvanized, painted aluminum, shall be rigidly affixed to the ends of the main arm shaft. The channels and a steel crossmember shall provide a sturdy mount for the arm, arm base assembly and counterweights.

COUNTERWEIGHTS: At the rear end of the side arm channels, hot dip galvanized counterweights shall be mounted to balance the arm. Counterweights shall be sectional and shall permit at least 10% adjustment.

ARM SHAFT: The main arm shaft shall be of 2" (51mm) diameter AISI 4150 with a minimum tensile strength of 140,000 psi. The shaft shall be mounted in heavy duty relubricable ball bearings.

OPERATING MECHANISM: The warning arm shall pivot in the vertical plane via a mechanical 4-bar linkage. The linkage shall utilize cranks keyed to the main arm shaft and transmission shaft and an adjustable connecting rod between
a pair of self-aligning spherical rod ends. The connecting rod shall be of 1" (25mm) diameter AISI 4150. The linkage shall be driven by a fully enclosed, double reduction, worm gear speed reducer. Gear ratio used shall produce an operation time of 11 seconds [option: other operation speeds available, depending on installation configuration].

On longer arms or when specified by the customer, an auxiliary crank shall be used, paired with the transmission crank, to reduce the load on the transmission and to better balance and stabilize the load on the housing and mounting structure. The auxiliary crank shall be mounted in a permanently lubricated bronze bearing.

The velocity of the arm shall follow a sinusoidal pattern to provide smooth operation. The arm shall begin and end its full motion path with zero velocity and accelerate smoothly to maximum velocity at mid-travel.

MOTOR: The motor shall be 1 hp, 480V, 3 ph, as specified by the customer. The motor shall be a C-face design and shall be mounted directly to the transmission. The motor shall be TEFC, instantly reversing and overload protected.

BRAKING MECHANISM: The motor shall be equipped with a solenoid-release, automatic brake. The brake shall have a manual release lever to permit manual operation of the gate during emergencies or setup.

HANCRANK: A handcrank shall be provided with each gate to facilitate manual operation of the gate.

LIMIT SWITCH: The gate limit switch assembly shall be a self-contained unit. The assembly shall provide 10 independent SPDT control switches. Switches shall be rated for 15 amps at 480 VAC. Switches shall be controlled by individually adjustable cams. The limit switch assembly design shall permit adjustment of all cams with the gate in any position. The limit switch assembly shall have a removable cover to help prevent accidental contact with switch terminals. Shaft, cams, bushings and housing pieces shall be of non-ferrous corrosion resistant materials.

SAFETY SWITCHES, TERMINAL BLOCKS AND WIRING: A manual disconnect switch shall be provided, pre-wired at the factory to break the main motor leads, to protect personnel during service. A handcrank safety switch shall be provided to prevent powered actuation of the gate during manual operation. Door safety switches shall be installed and set at the factory to break the control circuit when either access door is opened. Door safety switches shall have a pull-to-override feature for test operation and shall automatically reset when doors are closed. Control components and terminal blocks shall be mounted inside an electrical enclosure mounted facing the roadway side access opening, except where custom components required by the customer prevent this arrangement. Pressure-type, modular terminal blocks shall be fully labeled and clearly coded to wiring diagrams. All control wiring shall be clearly coded to wiring diagrams and shall terminate at the terminal block. Connections to screw-type terminals shall have lugs. Conductors shall be #14 AWG stranded, minimum.

WARRANTY: A 2 year warranty shall cover the gate and related equipment against defective material and components. Manufacturer shall furnish replacement parts for a minimum of 5 years. Replacement parts for standard components shall normally be available within 1 working day. Lamps, fuses and other components designed for a life less than 2 years shall be covered for the rated life of the component or the warranty period of the component manufacturer.

PARTIAL LIST OF INCLUDED OPTIONS:

<table>
<thead>
<tr>
<th>Aluminum Housing</th>
<th>Anchor Bolts (provided by manufacturer)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fiberglass Arm Section (at end of arm)</td>
<td>Mounting Template</td>
</tr>
<tr>
<td>12V LED Arm Lights</td>
<td>12VAC Arm Light Flasher</td>
</tr>
<tr>
<td>Offset Side Arm Channels</td>
<td>12" Bronze Shell Gong</td>
</tr>
<tr>
<td>Padlock Straps</td>
<td>1/8" Neoprene Base Gasket</td>
</tr>
</tbody>
</table>

Revised 8/09
TGW-1
SOUTH WEST
ON-COMING
TRAFFIC GATE
Section 7

Warranty
Standard Warranty

GENERAL STATEMENT OF WARRANTY: B&B Roadway stands behind the quality of our products. Our goal is to ensure that each customer’s expectations are exceeded in terms of quality, functionality, durability and customer support. Unfortunately, as with any product, occasionally something can go wrong. If a problem exists with our equipment, we want to fix it. Our warranty is designed to first ensure that our customers receive equipment that works properly, and second, to protect both our customers and our company. We are cooperative in resolving any problem and appreciate our customer’s cooperation in return.

TERM: Warranty terms are from date of shipment. All B&B Roadway products are warranted for 2 years unless otherwise specified. The warranty term on individual components supplied by B&B Roadway but not manufactured by us may be limited to the original equipment manufacturer’s warranty period or the component’s nominal expected life.

COVERAGE: Our warranty covers our labor, parts to correct defects in quality, material, or manufacturing and return shipping to the customer.

LIMITATIONS: Our warranty does NOT cover damage due to improper storage, installation, operation, or service; secondary damage to other equipment or structures; weather-related damage (except where the damage was a result of a flaw in the product, in which case liability is limited to replacement or repair of the product); damage from no-fault events ("acts of God"); damages due to collisions or vandalism; personal injuries (except as may be required by law); or incidental job-site labor by a contractor or sub-contractor (example: labor to replace a component). However, in case of damage to our equipment for any reason, we do provide expedited assistance in repairing damage to our equipment at a very reasonable cost.

In all cases, liability is limited to replacement or repair of the faulty equipment or component. Maximum total liability will not exceed the value of the equipment involved. In the event that the equipment or component must be returned to the factory, we will cover return shipping back to the customer (customer pre-pays shipping back to us). If a repair is made in the field, B&B Roadway will not accept back-charges in excess of our equivalent in-shop cost for the same procedure. If your actual labor cost is expected to be much higher than ours, please discuss alternatives with us.

Additional note: Our warning gates are designed to minimize damage to the gate and vehicle in the event of a collision and to minimize the time and effort required to return the equipment to service following a collision. However, we do NOT warranty damage resulting from collisions or labor/parts needed to return the equipment to service.

PROCEDURE FOR WARRANTY CLAIMS: If you experience any problem with our equipment, please call the factory first for technical support, toll free, at (888) 560-2060. Technical support is handled by experienced members of our engineering staff. Whenever possible, the engineer in charge of your project or an engineer familiar with your project will provide assistance. In our experience, the vast majority of problems, including those which initially seem serious, are solved over the phone by making field adjustments or by replacing a minor component in the field. Problem resolution normally follows one of four paths, or a combination thereof:

1. Resolution of the problem over the phone (i.e. wiring alterations, mechanical adjustments, etc.).
2. Replacement of a component or equipment. If this is an item we have in stock or can provide quickly, we may send a replacement item. In this case, you will receive an invoice. When we receive the original item, we will issue an offsetting credit. You will need to cover shipping of the original item back to us and incidental costs associated with removing/replacing the item. Usually, we can identify the particular component at fault over the phone. It is very rare that an entire gate or barrier would need to be shipped back to the factory. In that case, we would expedite repair of the equipment and return it to you. See below.
3. Return of the equipment to us for repair. Major or custom equipment should be shipped prepaid back to us for repair and re-habilitation if we feel this is necessary to ensure proper correction of the problem. We will cover repairs and return shipping charges.
4. Sending a factory representative on site. If a major piece of equipment requires repair or correction, we may choose to send a factory representative on site to complete the needed work. This would be at our expense, unless it becomes obvious that the alterations needed are not a result of a quality or manufacturing problem, but are a result of other problems at the site excluded by this warranty (see above).

RECORDS: B&B Roadway maintains and archives records of all the equipment that we sell. In most cases, we will know exactly what components were supplied in your equipment. If a component used in our equipment was purchased from another manufacturer and has become obsolete, we will attempt to locate the most appropriate replacement. If a component you need is one that we manufactured, we will normally be able to make a new one. However, due to the level of customization that we accommodate for our customers, it is not always possible to accurately document every component of a particular, custom-built product – although we try. Therefore, we may ask you to make measurements or provide other information in some cases to be sure we are providing exactly what you need.

PRODUCT EVOLUTION: B&B Roadway reserves the right to continue to improve our products. Future product improvements do not obligate B&B Roadway to make modifications to equipment previously sold.

PROJECT: [W] [H] [61]
PRODUCT: [V] [W] [Y]
SHIPMENT DATE: 9/3/10
WARRANTY EXPIRATION DATE: 9/3/12

Toll Free (888) 560-2060 15191 Highway 243 Russellville, AL 35654 Fax 256-332-4036